Question

. A consumer faces the following utility function: U=xM, with M representing dollars spent on all...

. A consumer faces the following utility function: U=xM, with M representing dollars spent on all goods   other than good x (therefore PM º 1). Assume that Px =$1 and I = $100.

   a. Find the optimal consumption bundle and the level of utility at that bundle. Show the result from this part on a graph. Place x on the horizontal axis and M on the vertical axis.

   b. Suppose the government provides the consumer with $20 worth of X-stamps. Find the new optimal consumption bundle. HINT: To find the solution you should assume that the consumer received a gift of $20 cash. (QUESTIONS TO PONDER: Why can make we make this assumption—after all, the consumer received food stamps not cash? Can we always make this assumption?). Show this result on the same graph as used in part (a).

       c. Suppose the government replaces its food stamp program with a per-unit subsidy program. The per-unit subsidy is selected so as to allow the consumer to achieve the same level of utility as under the food stamp program. Using the indirect utility function, find the per-unit subsidy that would be required to achieve this result. (NOTE: The per-unit subsidy equals $1 minus price of X under the per-unit subsidy. Notice that we are implicitly assuming that the supply of X is perfectly elastic and therefore the entire subsidy is passed on to consumers).

       Find x, M, and the cost to the government of providing this subsidy. Show this outcome on the same graph as used in parts (a) and (b). On your graph, indicate the cost to the government of each program.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
10. A consumer faces the following utility function: U=xM, with M representing dollars spent on all...
10. A consumer faces the following utility function: U=xM, with M representing dollars spent on all goods other than good x (therefore PM ? 1). Assume that Px =$1 and I = $100. a. Find the optimal consumption bundle and the level of utility at that bundle. Show the result from this part on a graph. Place x on the horizontal axis and M on the vertical axis. b. Suppose the government provides the consumer with $20 worth of X-stamps....
Consider a consumer with a utility function U = x2/3y1/3, where x and y are the...
Consider a consumer with a utility function U = x2/3y1/3, where x and y are the quantities of each of the two goods consumed. A consumer faces prices for x of $2 and y of $1, and is currently consuming 10 units of good X and 30 units of good Y with all available income. What can we say about this consumption bundle? Group of answer choices a.The consumption bundle is not optimal; the consumer could increase their utility by...
1. A consumer has the utility function U = min(2X, 5Y ). The budget constraint isPXX+PYY...
1. A consumer has the utility function U = min(2X, 5Y ). The budget constraint isPXX+PYY =I. (a) Given the consumer’s utility function, how does the consumer view these two goods? In other words, are they perfect substitutes, perfect complements, or are somewhat substitutable? (2 points) (b) Solve for the consumer’s demand functions, X∗ and Y ∗. (5 points) (c) Assume PX = 3, PY = 2, and I = 200. What is the consumer’s optimal bundle? (2 points) 2....
Let U (F, C) = F C represent the consumer's utility function, where F represents food...
Let U (F, C) = F C represent the consumer's utility function, where F represents food and C represents clothing. Suppose the consumer has income (M) of $1,200 , the price of food (PF) is $10 per unit, and the price of clothing (PC) is $20 per unit. Based on this information, her optimal (or utility maximizing) consumption bundle is:
3. Suppose that a consumer has a utility function u(x1, x2) = x1 + x2. Initially...
3. Suppose that a consumer has a utility function u(x1, x2) = x1 + x2. Initially the consumer faces prices (1, 2) and has income 10. If the prices change to (4, 2), calculate the compensating and equivalent variations. [Hint: find their initial optimal consumption of the two goods, and then after the price increase. Then show this graphically.] please do step by step and show the graph
Julie has preferences for food, f, and clothing, c, described by a Cobb-Douglas utility function u(f,...
Julie has preferences for food, f, and clothing, c, described by a Cobb-Douglas utility function u(f, c) = f · c. Her marginal utilities are MUf = c and MUc = f. Suppose that food costs $1 a unit and that clothing costs $2 a unit. Julie has $12 to spend on food and clothing. a. Sketch Julie’s indifference curves corresponding to utility levels U¯ = 12, U¯ = 18, and U¯ = 24. Using the graph (no algebra yet!),...
In a research paper an economist assumes that the typical consumer has a utility U(X, Y)...
In a research paper an economist assumes that the typical consumer has a utility U(X, Y) = X^0.25Y^0.75 and a budget of $1,000. a) Consider the utility function. What is the consumer’s attitude towards mixing X and Y? What is the shape of the consumer’s indifference curves? Do you expect this consumer to choose a bundle in the interior of the budget line or a bundle at one of the corners? Discuss. b) Now, turn your attention to the budget...
3. Nora enjoys fish (F) and chips(C). Her utility function is U(C, F) = 2CF. Her...
3. Nora enjoys fish (F) and chips(C). Her utility function is U(C, F) = 2CF. Her income is B per month. The price of fish is PF and the price of chips is PC. Place fish on the horizontal axis and chips on the vertical axis in the diagrams involving indifference curves and budget lines. (a) What is the equation for Nora’s budget line? (b) The marginal utility of fish is MUF = 2C and the Marginal utility of chips...
7. ????????? ?? ????h???? Samantha purchases housing (h) and other goods (?) with the utility function...
7. ????????? ?? ????h???? Samantha purchases housing (h) and other goods (?) with the utility function ? = h?. Her income is 120. Housing is measured in units of square feet. The price of a housing is 2 (per square foot) and the price of other goods 1. a. How much housing does she consume when she maximizes utility? b. The government has recently completed a study suggesting that everyone should have at least 80 square feet of housing (i.e.,...
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy....
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy. Find the optimal values of x and y as a function of the prices px and py with an income level m. px and py are the prices of good x and y respectively. 2. Consider a utility function that represents preferences: u(x,y) = min{80x,40y} Find the optimal values of x and y as a function of the prices px and py with an...