Question

The production of sunglasses is characterized by the production function Q(L,K)= 4L1/2K 1/2 . Suppose that...

The production of sunglasses is characterized by the production function Q(L,K)= 4L1/2K 1/2 . Suppose that the price of labor is $10 per unit and the price of capital is $90 per unit. In the short-run, capital is fixed at 2,500. The firm must produce 36,000 sunglasses. How much money is it sacrificing by not having the ability to choose its level of capital optimally? That is, how much more does it cost to produce 36,000 sunglasses the short-run compared to the long-run?

a. $9,000 b. $81,000 c. $225,000 d. $171,000 e. $171,525

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The production of sunglasses is characterized by the production function Q(L,K)= 4L^1/2K^1/2. Suppose that the price...
The production of sunglasses is characterized by the production function Q(L,K)= 4L^1/2K^1/2. Suppose that the price of labor is $10 per unit and the price of capital is $90 per unit. In the short-run, capital is fixed at 2,500. The firm must produce 36,000 sunglasses. How much money is it sacrificing by not having the ability to choose its level of capital optimally? That is, how much more does it cost to produce 36,000 sunglasses the short-run compared to the...
Firm A’s production function and cost line are given by:Q=Q(L,K)=2 L^(1/2) K^(1/2) (The production function)...
Firm A’s production function and cost line are given by:Q=Q(L,K)=2 L^(1/2) K^(1/2) (The production function)?L+?=30000 (The cost line of firm A):?L is the amount of labor hired.?K is the amount of capital hired.??p_L or the price of labor is 1 dollar per unit.??p_K or the price of capital is 1 dollars per unit.C or cost (think of it as the firm’s budget) is 30000 dollars.How much labor and capital should this firm optimally hire?
(2) Consider the production function f(L, K) = 2K √ L. The marginal products of labor...
(2) Consider the production function f(L, K) = 2K √ L. The marginal products of labor and capital for this function are given by MPL = K √ L , MPK = 2√ L. Prices of inputs are w = 1 per hour of labor and r = 4 per machine hour. For the following questions suppose that the firm currently uses K = 2 machine hours, and that this can’t be changed in the short–run. (e) What is the...
A production function for widgets is given by Q = f(L,K) = L1/2 K1/2 where L...
A production function for widgets is given by Q = f(L,K) = L1/2 K1/2 where L and K denote, respectively, the level of the homogeneous units of labour and capital used in production. a) If a producer wishes to produce 45 widgets and has hired 25 units of labour, how many units of capital must be used to fill this order? b) If a producer has received an order for 30 widgets which must be produced but only has 9...
Suppose a firm’s production function is given by Q = 2K^1/2 * L^1/2 , where K...
Suppose a firm’s production function is given by Q = 2K^1/2 * L^1/2 , where K is capital used and L is labour used in the production. (a) Does this production function exhibit increasing returns to scale, constant returns to scale or decreasing returns to scale? (b) Suppose the price of capital is r = 1 and the price of labour is w = 4. If a firm wants to produce 16 chairs, what combination of capital and labor will...
An electronics plant’s production function is Q = L 2K, where Q is its output rate,...
An electronics plant’s production function is Q = L 2K, where Q is its output rate, L is the amount of labour it uses per period, and K is the amount of capital it uses per period. (a) Calculate the marginal product of labour (MPL) and the marginal product of capital (MPK) for this production function. Hint: MPK = dQ/dK. When taking the derivative with respect to K, treat L as constant. For example when Q = L 3K2 ,...
Suppose your production technology is q = L0.25K0.75 , where K is capital and L is...
Suppose your production technology is q = L0.25K0.75 , where K is capital and L is labour. The price of output is $3 per unit and the price of labour is $4 per unit. If capital is fixed at 81, what is the optimal quantity of labour in the short run?
A firm has the following production function: q=5LK^0.5+2L^2K-L^3K What is its short-run production function if capital...
A firm has the following production function: q=5LK^0.5+2L^2K-L^3K What is its short-run production function if capital is fixed at K=9? What are the firm’s marginal product of labour and average product of labour in the short run? Show that the firm’s elasticity of output with respect to labour in the short run is a function of marginal product of labour and average product of labour. Calculate the short-run elasticity of output with respect to labour
Suppose that a firm's fixed proportion production function is given by q = min(2k, 4L), and...
Suppose that a firm's fixed proportion production function is given by q = min(2k, 4L), and that the rental rates for capital and labor are given by v = 1, w = 3. A) Calculate the firm's long-run total, average, and marginal cost curves. B) Graph these curves. C) Suppose that k is fixed at 10 in the short run. Calculate the firm's short-run total, average, and marginal cost curves and graph them. D) Now suppose in the long run...
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C =...
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C = 3L + 12K. (For some reason variable "w" is not provided) a. Optimize labor usage in the short run if the firm has 9 units of capital and the product price is $3. b. Show how you can calculate the short run average total cost for this level of labor usage? c. Determine “MP per dollar” for each input and explain what the comparative...