Question

Suppose Mary has utility U = C+20L i.e. Mary gets the same utils from $20 of...

Suppose Mary has utility U = C+20L i.e. Mary gets the same utils from $20 of consumption or 1 hour of leisure. Further, assume that Mary can make $15/hour at her job and has absolutely no savings. Lastly… assume Mary must sleep 8 hours a day (which counts as neither work nor leisure), but can work and/or leisure up to the remaining 16 hours (with fractional hours of work / leisure allowed as well). Mary is trying to figure out how to spend her day.

  1. Draw Mary’s budget set i.e. draw all combinations of consumption and Leisure Mary can afford.
  2. On a separate graph draw 2 indifference curves: one showing all points where Mary has 20 utils and another where Mary has 40 utils.

Homework Answers

Answer #1

(a) Mary's budget constraint would be , for N be the labor hours. As the maximum Mary can work is 16 hours, we have L+N=16, and hence, the constraint would be or . For the given wage, we have the constraint as . The graph is as below.

(b) The two lines would have the equation and . The graph is as below (note that to be clean, the graph is scaled).

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Adam has a utility function U(C,R) = CR, where R is leisure and C is consumption...
Adam has a utility function U(C,R) = CR, where R is leisure and C is consumption per day. He has 16 hours per day to divide between work and leisure. Mark has a non-labor income of $48 per day. (a) If Mark is paid a wage of $6 per hour, how many hours of leisure will he choose per day? (b) As a result of a promotion, Mark is now paid $ 8 per hour. How will his leisure time...
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100...
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100 hours to divide between work and leisure per week wage is $20/hr 1. Write down budget constraint in terms of consumption and hours of work 2.Tom make decisions on hours of work, leisure and consumption to max. utility. Explain why we can collapse this problem to one in which he chooses hours of leisure only 3. Find optimal hours of work and total consumption...
Adam has a utility function U(C,R) = CR, where R is leisure and C is consumption...
Adam has a utility function U(C,R) = CR, where R is leisure and C is consumption per day. He has 16 hours per day to divide between work and leisure. Mark has a non-labor income of $48 per day. (a) If Mark is paid a wage of $6 per hour, how many hours of leisure will he choose per day? (b) As a result of a promotion, Mark is now paid $ 8 per hour. How will his leisure time...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2),...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2), where ct denotes the stream of consumption in period t and l, hours of leisure. He can choose to work only when he is young. If he works an hour, he can earn 10 dollars (he can work up to 100 hours). He can also use savings to smooth consumption over time, and if he saves, he will earn an interest rate of 10%...
Julie employs Katrina as her assistant. Katrina is a utility maximizing worker with u(z, f) =...
Julie employs Katrina as her assistant. Katrina is a utility maximizing worker with u(z, f) = z1/2f1/2 and MRS = f/z. Katrina has non-labour income 40 and allocates 24 hours per day between labour h and leisure z. Julie pays Katrina a wage of 5 dollar per hour. Provide an Indifference Curve and Budget Line Diagram to illustrate and quantify, hours of leisure, hours of work and consumption. Katrina is over working. What hourly wage would make Katrina voluntarily cut...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c, l) = c 2/3 l 1/3 . Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c,l) = c2/3l1/3. Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1 and the price of leisure...
John’s utility function is represented by the following: U(C,L) = (C-400)*(L-100), where C is expenditure on...
John’s utility function is represented by the following: U(C,L) = (C-400)*(L-100), where C is expenditure on consumption goods and L is hours of leisure time. Suppose that John receives $150 per week in investment income regardless of how much he works. He earns a wage of $20 per hour. Assume that John has 110 non-sleeping hours a week that could be devoted to work. a.Graph John’s budget constraint. b.Find John’s optimal amount of consumption and leisure. c.John inherits $300,000 from...
2. An individual utility function is given by U(c,h) = c·h, where c represents consumption during...
2. An individual utility function is given by U(c,h) = c·h, where c represents consumption during a typical day and h hours of leisure enjoyed during that day. Let l be the hours of work during a day, then l + h = 24. The real hourly market wage rate the individual can earn is w = $20. This individual receives daily government transfer benefits equal to n = $100. For the graphical analysis of this individual’s utility maximization problem,...
Suppose that a worker’s utility (i.e., preferences) with respect to total income (Y) and hours of...
Suppose that a worker’s utility (i.e., preferences) with respect to total income (Y) and hours of leisure time per week (LT) can be represented by the following Cobb-Douglas utility function: U = Y0.4 ∙ LT0.6 (note: A=1; α=0.4; β=0.6) Assume that the market wage is $25 per hour of work (H), and his/her non-labor income is $300 per week. The worker has 70 hours per week to allocate between labor market activity and leisure time (i.e., T = 70). Given...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT