Question

Consider a Cournot market with two firms that have TC(Q) =5Q. Demand is given by P=...

Consider a Cournot market with two firms that have TC(Q) =5Q. Demand is given by P= 200−2(Q1+Q2).

A) Find firm 1’s profit as a function of Q1 and Q2

B) Find the equilibrium price, quantity sold by each firm, and profit for each firm.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider two firms with the cost function TC(q) = 5q (constant average and marginal cost,of 5),...
Consider two firms with the cost function TC(q) = 5q (constant average and marginal cost,of 5), facing the market demand curve Q = 53 – p (where Q is the total of the firms’ quantities, and p is market price). a. What will be each firm’s output and profit if they make their quantity choices simultaneously (as Cournot duopolists)? b. Now suppose Firm 1 is the Stackelberg leader (its decision is observed by Firm 2 prior to that firm’s decision)....
Q1. Consider a Cournot oligopoly in which the market demand curve is Q = 60 -...
Q1. Consider a Cournot oligopoly in which the market demand curve is Q = 60 - P. There are two firms in this market, so Q = q1 + q2. The firms in this market are not identical: Firm 1 faces cost function c1(q1) = 2q12, while firm 2's cost function is c2(q2) = 28q2. In the space below, write down a function for Firm 1's profit, in terms of q1 and q2. Q2. Refer back to the Cournot oligopoly...
Consider a market with two identical firms. The market demand is P = 26 – 2Q,...
Consider a market with two identical firms. The market demand is P = 26 – 2Q, where Q = q1 + q2. MC1 = MC2 = 2. 1. Solve for output and price with collusion. 2. Solve for the Cournot-Nash equilibrium. 3. Now assume this market has a Stackelberg leader, Firm 1. Solve for the quantity, price, and profit for each firm. 4. Assume there is no product differentiation and the firms follow a Bertrand pricing model. Solve for the...
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q,...
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q, where Q = q1 + q2 is the aggregate quantity on the market. Both firms have total costs ci(qi) = cqi, but demand is uncertain: it is High (a = aH) with probability theta and low (a= aL) with probability 1 - theta. Furthermore, information is asymmetric: firm 1 knows whether demand is high or low, but firm 2 does not. All this is...
2. Consider two identical firms in a Cournot competition. The market demand is P = a...
2. Consider two identical firms in a Cournot competition. The market demand is P = a – bQ. TC1 = cq1 = TC2 = cq2 . a. Find the profit function of firm 1. b. Maximize the profit function to find the reaction function of firm 1. c. Solve for the Cournot-Nash Equilibrium. d. Carefully discuss how the slope of the demand curve affects outputs and price.
N firms, in a Cournot oligopoly are facing the market demand given by P = 140...
N firms, in a Cournot oligopoly are facing the market demand given by P = 140 – 0.4Q, where P is the market price and Q is the market quantity demanded. Each firm has (total) cost of production given by C(qi) = 200 + 10qi, where qi is the quantity produced by firm i (for i from 1 to N). New firms would like to enter the market if they expect to make non-negative profits in this market; the existing...
Consider two identical firms (no. 1 and no. 2) that face a linear market demand curve....
Consider two identical firms (no. 1 and no. 2) that face a linear market demand curve. Each firm has a marginal cost of zero and the two firms together face demand: P = 50 - 0.5Q, where Q = Q1 + Q2. a. Find the Cournot equilibrium Q and P for each firm. Calculate the results rounded to the second digit after the decimal point b. Find the equilibrium Q and P for each firm assuming that the firms collude...
Fill in the blanks. Consider two firms facing the demand curve: P=60-5Q where Q=Q1+Q2. The firm's...
Fill in the blanks. Consider two firms facing the demand curve: P=60-5Q where Q=Q1+Q2. The firm's cost functions are C1(Q1)=15+10Q1 and C2(Q2)=15+20Q2 Combined, the firms will produce __ units of output, of which firm 1 will produce __ units and firm 2 will produce __ units. If the firms compete, then firm 1 will produce __ units of output and firm 2 will produce __ units of output. Draw the firms' reaction curves and sho the equilibrium. Then, indicate the...
Consider a Cournot model with two firms, firm 1 and firm 2, producing quantities q1 and...
Consider a Cournot model with two firms, firm 1 and firm 2, producing quantities q1 and q2, respectively. Suppose the inverse market demand function is: P = 450 – Q where Q denotes the total quantity supplied on the market. Also, each firm i = 1,2 has a total cost function c(qi) = 30qi. a) What is the Nash equilibrium of this Cournot game ? What is the market prices ? Compute each firm’s profit and the industry profit. b)...
No scan of handwritten answers 1. A monopolist faces a market demand curve given by Q...
No scan of handwritten answers 1. A monopolist faces a market demand curve given by Q = 53- P. Its cost function is given by C = 5Q + 50, i.e. its MC =$5. (a) Calculate the profit-maximizing price and quantity for this monopolist. Also calculate its optimal profit. (b) Suppose a second firm enters the market. Let q1 be the output of the first firm and q2 be the output of the second. There is no change in market...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT