Question

3. The White Noise Corporation has estimated the following Cobb-Douglas production function using monthly observations for...

3. The White Noise Corporation has estimated the following Cobb-Douglas production function using monthly observations for the past two years:

ln Q = 2.485 + 0.50 ln K + 0.50 ln L + 0.20 ln N

where Q is the number of units of output, K is the number of units of capital, L is the number of unit of labor, and N is the number of units of raw materials. With respect to the above results, answer the following questions when K = 90, L = 485 and N =4500.

a. Q

b. Rewrite the estimated function in the form of a power function.

c. Find the marginal products of capital, labor, and raw materials

d. Find the value of the output elasticities of K, L, and N

e. Determine whether the returns to scale are increasing, decreasing or constant

f. Suppose the price of capital is $187.30 per unit, the price of labor is $34.75, and price of raw materials is $1.50 per unit. This this an optimal combination of resources

g. What price would the company have to charge for the product to maximize profits

only F & G please

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. Assume that a manufacturer faces a Cobb-Douglas production function, q=40K^0.5L^0.5 where q is output per...
2. Assume that a manufacturer faces a Cobb-Douglas production function, q=40K^0.5L^0.5 where q is output per period, L is labor, K is capital. The market price of labor (w) is $50 per unit and the price of capital (r) is $200 per unit. a. Specify and illustrate graphically the short-run MPl and APl for L = 5 to 30 units (assume that the level of capital is 25; use increments of 5 units of labor). Is this firm operating in...
You are given this estimate of a Cobb-Douglas production function: Q = 10K0.6L0.8 A. Calculate the...
You are given this estimate of a Cobb-Douglas production function: Q = 10K0.6L0.8 A. Calculate the output elasticities of capital and labor. (Note: As shown on p. 300, for the Cobb-Douglas production function Q = 10KaLb the output elasticity of capital is EK = (%ΔQ/%ΔK) = a and the output elasticity of labor is EL = (%ΔQ/%ΔL) = b. B. Using what you found in Part (A), by how much will output increase if the firm increases capital by 10...
1. Using the Cobb-Douglas production function: Yt = AtKt1/3Lt2/3 If K = 27, L = 8...
1. Using the Cobb-Douglas production function: Yt = AtKt1/3Lt2/3 If K = 27, L = 8 A = 2, and α = 1/3, what is the value of Y? (For K and L, round to the nearest whole number) ______ 2. If Y = 300, L = 10, and α = 1/3, what is the marginal product of labor? ______ 3. Using the values for Y and α above, if K = 900, what is the marginal product of capital?...
Suppose a Cobb-Douglas Production function is given by the following: P(L,K)=10L0.9K0.1 where L is units of...
Suppose a Cobb-Douglas Production function is given by the following: P(L,K)=10L0.9K0.1 where L is units of labor, K is units of capital, and P(L,K)P(L,K) is total units that can be produced with this labor/capital combination. Suppose each unit of labor costs $400 and each unit of capital costs $1,200. Further suppose a total of $600,000 is available to be invested in labor and capital (combined). A) How many units of labor and capital should be "purchased" to maximize production subject...
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C =...
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C = 3L + 12K. (For some reason variable "w" is not provided) a. Optimize labor usage in the short run if the firm has 9 units of capital and the product price is $3. b. Show how you can calculate the short run average total cost for this level of labor usage? c. Determine “MP per dollar” for each input and explain what the comparative...
Suppose a Cobb-Douglas Production function is given by the following: P(L, K) = (50L^(0.5))(K^(0.5)) where L...
Suppose a Cobb-Douglas Production function is given by the following: P(L, K) = (50L^(0.5))(K^(0.5)) where L is units of labor, K is units of capital, and P(L, K) is total units that can be produced with this labor/capital combination. Suppose each unit of labor costs $300 and each unit of capital costs $1,500. Further suppose a total of $90,000 is available to be invested in labor and capital (combined). A) How many units of labor and capital should be "purchased"...
In the Cobb-Douglas production function : the marginal product of labor (L) is equal to β1...
In the Cobb-Douglas production function : the marginal product of labor (L) is equal to β1 the average product of labor (L) is equal to β2 if the amount of labor input (L) is increased by 1 percent, the output will increase by β1 percent if the amount of Capital input (K) is increased by 1 percent, the output will increase by β2 percent C and D
Given the Cobb-Douglas production function q = 2K 1 4 L 3 4 , the marginal...
Given the Cobb-Douglas production function q = 2K 1 4 L 3 4 , the marginal product of labor is: 3 2K 1 4 L 1 4 and the marginal product of capital is: 1 2K 3 4 L 3 4 . A) What is the marginal rate of technical substitution (RTS)? B) If the rental rate of capital (v) is $10 and the wage rate (w) is $30 what is the necessary condition for cost-minimization? (Your answer should be...
Hello, pls explain. Thank you! -------------------------------- The technology for making nails is described by the Cobb-Douglas...
Hello, pls explain. Thank you! -------------------------------- The technology for making nails is described by the Cobb-Douglas production function Q(L,K) = L*K, where L is the number of workers and K is the number of machines. Each worker is two times as expensive as a machine. The MRTS between Labor and Capital at the cost-minimizing output combination is? Explain the economic meaning of your MRTS.
A firm’s production is represented by the following Cobb-Douglas function: ? = ?^2/3?^1/3. The rental rate,...
A firm’s production is represented by the following Cobb-Douglas function: ? = ?^2/3?^1/3. The rental rate, r, of capital is given by $200 and the price of labor is $100. a) For a given level of output, what should be the ratio of capital to labor in order to minimize costs? b) How much capital and labor should be used to produce those 300 units? c) What is the minimum cost of producing 300 units? d) What is the short...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT