Question

. Suppose your utility depends on two goods: x and y. The utility function is u(x,...

. Suppose your utility depends on two goods: x and y. The utility function is u(x, y) = ln(x) + ln(y) . Suppose you have an income of $800. Further, assume that the price of x is 8 and the price of y is 10.

Write down the equation for the budget constraint. Compute the marginal rate of subsitution between x and y. • Compute the utility maximizing combination of x and y. •

Suppose your income increases to $1000 with no change in prices. What will be the new utility maximizing combination of x and y. Are both goods normal goods?

Homework Answers

Answer #1

Ans.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose there are two goods, X and Y.  The price of good X is $2 per unit...
Suppose there are two goods, X and Y.  The price of good X is $2 per unit and the price of good Y is $3 per unit.  A given consumer with an income of $300 has the following utility function: U(X,Y) = X0.8Y0.2         which yields marginal utilities of: MUX= 0.8X-0.2Y0.2 MUY= 0.2X0.8Y-0.8         a.     What is the equation for this consumer’s budget constraint in terms of X and Y?         b.    What is the equation for this consumer’s marginal rate of substitution (MRSXY)?  Simplifyso you only have...
Ron consumes two goods, X and Y. His utility function is given by U(X,Y) = 44XY....
Ron consumes two goods, X and Y. His utility function is given by U(X,Y) = 44XY. The price of X is $11 a unit; the price of Y is $8 a unit; and Ron has $352 to spend on X and Y. a. Provide the equation for Ron’s budget line. (Your answer for the budget line should be in the form Y = a – bX, with specific numerical values given for a and b.) b. Provide the numerical value...
We have a utility function U = aln(x) + (1 - a)ln(Y) subject to the budget...
We have a utility function U = aln(x) + (1 - a)ln(Y) subject to the budget constraint: Px'X + Py'Y = I Please use the Lagrange Multiplier method to find the demand function for goods X and Y given the above information about I (income), Px (price of goods X), Py (prices of good Y) Please interpret the meaning of the Multiplier.
Suppose that there are two goods, X and Y. The utility function is U = XY...
Suppose that there are two goods, X and Y. The utility function is U = XY + 2Y. The price of one unit of X is P, and the price of one unit of Y is £5. Income is £60. Derive the demand for X as a function of P.
Jen’s utility function is U (X, Y ) = (X + 2)(Y + 1), where X...
Jen’s utility function is U (X, Y ) = (X + 2)(Y + 1), where X is her consumption of good X and Y is her consumption of good Y . a. Write an equation for Jen’s indifference curve that goes through the point (X, Y ) = (2, 8). On the axes below, sketch Jen’s indifference curve for U = 36 b. Suppose that the price of each good is 1 and that Jen has an income of 11....
1a) According to Cardinal utility theory, at the utility maximizing equilibrium combination for two goods, X...
1a) According to Cardinal utility theory, at the utility maximizing equilibrium combination for two goods, X and Y, which of the following must be TRUE? The marginal utility per dollar spent on X will exceed the marginal utility per dollar spent on Y. The total expenditure will be the same for each good. The marginal utility per dollar from X equals the marginal utility per dollar from Y. The marginal utility will be the same for each good. 1B) In...
Suppose a consumer’s Utility Function U(x,y) = X1/2Y1/2. The consumer wants to choose the bundle (x*,...
Suppose a consumer’s Utility Function U(x,y) = X1/2Y1/2. The consumer wants to choose the bundle (x*, y*) that would maximize utility. Suppose Px = $5 and Py = $10 and the consumer has $500 to spend. Write the consumer’s budget constraint. Use the budget constraint to write Y in terms of X. Substitute Y from above into the utility function U(x,y) = X1/2Y1/2. To solve for the utility maximizing, taking the derivative of U from (b) with respect to X....
Given is the Total Utility Function along with Budget Constraint:                               &nbs
Given is the Total Utility Function along with Budget Constraint:                                                  Utility Function:                                 U (X, Y) = X0.2Y0.3 Budget Constraint:                             I = XPx + Y Py What is the consumer’s marginal utility for X and for Y? Suppose the price of X is equal to 4 and the price of Y equal to 6. What is the utility maximizing proportion of X and Y in his consumption? {construct the budget constraint) If the total amount of money he is...
Claraís utility function is u (x; y) = (x + 2) (y + 1) where x...
Claraís utility function is u (x; y) = (x + 2) (y + 1) where x is her consumption of good x and y is her consumption of good y. (a) Write an equation for Claraís indi§erence curve that goes through the point (x; y) = (2; 8). (b) Suppose that the price of each good is $1 and Clara has an income of $11. Can Clara achieve a utility level of at least 36 with this budget? ( c)...
Suppose a consumer has the utility function U (x, y) = xy + x + y....
Suppose a consumer has the utility function U (x, y) = xy + x + y. Recall that for this function the marginal utilities are given by MUx(x,y) = y+1 and MUy(x,y) = x+1. (a) What is the marginal rate of substitution MRSxy? (b)If the prices for the goods are px =$2 and py =$4,and if the income of the consumer is M = $18, then what is the consumer’s optimal affordable bundle? (c) What if instead the prices are...