Question

A product is produced by two profit-maximizing firms in a Stackelberg duopoly: firm 1 chooses a...

A product is produced by two profit-maximizing firms in a Stackelberg duopoly: firm 1 chooses a quantity q1 ? 0, then firm 2 observes q1 and chooses a quantity q2 ? 0. The market price is determined by the following formula: P ( Q ) = 4 ? Q , where Q = q(1) +q(2) . The cost to firm i of producing q i is Ci( qi ) = q^2)i . (Note: the only difference between this problem and the usual problem is that instead of Ci(qi ) = cq i we have Ci(qi ) = q^2i ).

a.) Calculate the best-response function for firm 2 as a function of firm 1’s quantity q(1) .

b.) What are the equilibrium quantities of the subgame-perfect Nash equilibrium?

c.) How does the total quantity, Q = q(1) + q(2) , produced in this Stackelberg model of duopoly compare with the total quantity produced in the Cournot model of duopoly? Which type of market competition is more beneficial for consumers? (In the Nash equilibrium of the Cournot model, each firm produces 4/5)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two firms, firm 1 & firm 2, in a Stackelberg sequential duopoly are facing the market...
Two firms, firm 1 & firm 2, in a Stackelberg sequential duopoly are facing the market demand given by P = 140 – 0.4Q, where P is the market price and Q is the market quantity demanded. Firm 1 has (total) cost of production given by C(q1) = 200 + 15q1, where q1 is the quantity produced by firm 1. Firm 2 has (total) cost of production given by C(q2) = 200 + 10q2, where q2 is the quantity produced...
There is a Cournot duopoly competition between Firm 1 and Firm 2. The inverse demand function...
There is a Cournot duopoly competition between Firm 1 and Firm 2. The inverse demand function is given by P(Q)=100-q, where Q=q1+q2 and qi denotes the quantity produced by firm i for all iÎ {1, 2} and the cost function is given by ci(qi)=10qi. Describe this problem as a normal-form game. Find pure-strategy Nash Equilibria for both firms.
Consider a Cournot model with two firms, firm 1 and firm 2, producing quantities q1 and...
Consider a Cournot model with two firms, firm 1 and firm 2, producing quantities q1 and q2, respectively. Suppose the inverse market demand function is: P = 450 – Q where Q denotes the total quantity supplied on the market. Also, each firm i = 1,2 has a total cost function c(qi) = 30qi. a) What is the Nash equilibrium of this Cournot game ? What is the market prices ? Compute each firm’s profit and the industry profit. b)...
Consider the following 2 period sequential game. There are two players, Firm 1 and Firm 2....
Consider the following 2 period sequential game. There are two players, Firm 1 and Firm 2. They pro- duce identical goods and these goods are perfect substitutes. The inverse demand function in this market is given by P = 12 − (q1 + q2). Firm 1 moves first and choose its output q1. Firm 2 observes Firm 1’s decision of q1 and then chooses its output q2.\ Suppose that the cost function of both Firm 1 and 2 is given...
Suppose there are n firms in a Cournot oligopoly model. Let qidenote the quantity produced by...
Suppose there are n firms in a Cournot oligopoly model. Let qidenote the quantity produced by firm i, and let Q = q1 + q2 +…+ qn be the aggregate quantity in the market. Let P denote the market clearing price and assume that the inverse market demand is given by P(Q)=a - Q (when Q<a, else P=0). Assume that the total cost for firm i of producing quantity qi is C(qi) = cqi . That is, there are no...
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q,...
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q, where Q = q1 + q2 is the aggregate quantity on the market. Both firms have total costs ci(qi) = cqi, but demand is uncertain: it is High (a = aH) with probability theta and low (a= aL) with probability 1 - theta. Furthermore, information is asymmetric: firm 1 knows whether demand is high or low, but firm 2 does not. All this is...
Consider a duopoly with two firms with the cost functions: Firm 1: C1(q1)=5q1 Firm 2: C2(q2)=5q2...
Consider a duopoly with two firms with the cost functions: Firm 1: C1(q1)=5q1 Firm 2: C2(q2)=5q2 The firms compete in a market with inverse demand p = 300 - 8Q where Q=q1+q2. The firms compete in a Cournot fashion by choosing output simultaneously.   What is the Nash-Cournot equilibrium output of firm 1? Round to nearest .1
Two firms compete as a Stackelberg duopoly. Firm 1 is the market leader. The inverse market...
Two firms compete as a Stackelberg duopoly. Firm 1 is the market leader. The inverse market demand they face is P = 62 - 2Q, where Q=Q1+Q2. The cost function for each firm is C(Q) = 6Q. Given that firm 2's reaction function is given by Q2 = 14 - 0.5Q1, the optimal outputs of the two firms are: a. QL = 9.33; QF = 9.33. b. QL = 14; QF = 7. c. QL = 6; QF = 3....
In a homogeneous products duopoly, each firm has a marginal cost curve MC = 10 +...
In a homogeneous products duopoly, each firm has a marginal cost curve MC = 10 + Qi, i = 1, 2. The market demand curve is P = 35 - Q, where Q = Q1 + Q2. What are the Cournot equilibrium price in this market?
Assume there are two firms in a Stackelberg game. Firm 1 chooses its output first and...
Assume there are two firms in a Stackelberg game. Firm 1 chooses its output first and Firm chooses its output after knowing what Firm 1’s output is. Market demand is given by P = 1,000 – 4Q. Each firm has identical marginal cost of 100. Determine the Nash equilibrium for this game.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT