Question

Consider a market with demand p = a − bq. There are two firms. Both firms...

  1. Consider a market with demand p = a − bq. There are two firms. Both firms produce the same homogeneous product but have different technologies. Firm A has a cost function cA(qA) = cA × qA and firm B has a cost function cB(qB) = cB × qB. If necessary, assume that cA < cB.

    1. (a) Find the equilibrium quantities produced by each firm, the total equilibrium quantity, and the equilibrium price as a function of a, b, cA, and cB.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The market demand is given by P = 90 − 2Q. There are only two firms...
The market demand is given by P = 90 − 2Q. There are only two firms producing this good. Hence the quantity supplied in the market is the sum of each firm’s quantity supplied (that is, Q = qA + qB), where qj is the firm j 0 s quantity supplied). Firm A has zero marginal cost, while Firm B has the marginal cost of $30. Each firm has no fixed cost, and simultaneously chooses how many units to produce....
Two firms, a and b, compete in a market to sell homogeneous products with inverse demand...
Two firms, a and b, compete in a market to sell homogeneous products with inverse demand function P = 400 – 2Q where Q = Qa + Qb. Firm a has the cost function Ca = 100 + 15Qa and firm b has the cost function Cb = 100 + 15Qb. Use this information to compare the output levels, price and profits in settings characterized by the following markets: Cournot Stackelberg Bertrand Collusion
Two firms, a and b, compete in a market to sell homogeneous products with inverse demand...
Two firms, a and b, compete in a market to sell homogeneous products with inverse demand function P = 400 – 2Q where Q = Qa + Qb. Firm a has the cost function Ca = 100 + 15Qa and firm b has the cost function Cb = 100 + 15Qb. Use this information to compare the output levels, price, and profits in settings characterized by the following markets: a, Cournot b, Stackelberg c, Bertrand d, Collusion
Cournot Model: Consider a duopoly where 2 firms produce a homogeneous product. Under the assumption that...
Cournot Model: Consider a duopoly where 2 firms produce a homogeneous product. Under the assumption that one firm’s decision on output would depend on the other firm’s output, a market demand is given as P = 90 - Q where Q = QA + QB (QA is the quantity of a firm A and QB is the quantity of a firm B). Find the quantity and the price in this duopoly when MC of both firms = 0.
2. Question 2 (50 marks) Consider two firms (A and B) engaging in Cournot Competition. Both...
2. Question 2 Consider two firms (A and B) engaging in Cournot Competition. Both firms face an inverse market demand curve P(Q)=700-5Q, where Q=qA+qB. The marginal revenue curve for firm A is MRA=700-10qA-5qB and the marginal revenue curve for firm B is MRB=700-10qB-5qA. The firms have identical cost functions, with constant marginal cost MC=20. A) Determine the profit function for firm A and firm B. B) Solve for the best-response functions of both firms. C) Determine the equilibrium quantities both...
Consider a market with 2 identical firms (a and b). The market demand is P =...
Consider a market with 2 identical firms (a and b). The market demand is P = 14 - Q where Q = Qa + Qb. For both firms AC=MC= 2. A. Solve for the Cournot-Nash reaction functions of each firm. B. Solve for the Cournot- Nash equilibrium. Solve for Q, Qa, Qb, Price, and each firms profit. C. Compare the Cournot-Nash equilibrium with perfect competition, and monopoly (you can refer to your results from question 2, if you’ve already done...
Consider a market with 2 identical firms (a and b). The market demand is P =...
Consider a market with 2 identical firms (a and b). The market demand is P = 14 - Q where Q = Qa + Qb. For both firms AC=MC= 2. A. Solve for the Cournot-Nash reaction functions of each firm. B. Solve for the Cournot- Nash equilibrium. Solve for Q, Qa, Qb, Price, and each firms profit. C. Compare the Cournot-Nash equilibrium with perfect competition, and monopoly (you can refer to your results from question 2, if you’ve already done...
Suppose that market ( inverse) demand is linear and given by p(y) = 120-y Two firms...
Suppose that market ( inverse) demand is linear and given by p(y) = 120-y Two firms compete in this market. Firm 1 has cost function ca(y) = 30y while its competitor, Firm B, has cost cb(y) = y2 i. Suppose that firm 1 is acting alone and acting as a monopolist. Find the market price and quantity sold assuring firm 1 maximizes its profits. ii. Suppose that both firms are Cournot competitors. Find the quantity produced by each firm and...
Two firms, A and B, engage in Bertrand price competition in a market with inverse demand...
Two firms, A and B, engage in Bertrand price competition in a market with inverse demand given by p = 24 - Q. Assume both firms have marginal cost: cA = cB = 0. Whenever a firm undercuts the rival’s price, it has all the market. If a firm charges the same price as the rival, it has half of the market. If a firm charge more than the rival, it has zero market share. Suppose firms have capacity constraints...
Suppose there are two firms operating in a market. The firms produce identical products, and the...
Suppose there are two firms operating in a market. The firms produce identical products, and the total cost for each firm is given by C = 10qi, i = 1,2, where qi is the quantity of output produced by firm i. Therefore the marginal cost for each firm is constant at MC = 10. Also, the market demand is given by P = 106 –2Q, where Q= q1 + q2 is the total industry output. The following formulas will be...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT