Question

Adam has a utility function U(C,R) = CR, where R is leisure and C is consumption...

Adam has a utility function U(C,R) = CR, where R is leisure and C is consumption per day. He has 16 hours per day to divide between work and leisure. Mark has a non-labor income of $48 per day.


(a) If Mark is paid a wage of $6 per hour, how many hours of leisure will he choose per day?
(b) As a result of a promotion, Mark is now paid $ 8 per hour. How will his leisure time change?

(c) Analyze the changes in Mark's leisure time using the substitution effect and the income effect.

Homework Answers

Answer #1

A) utility maximizing condition;

MUc/pc=MU(R)/w

R/1=C/6

C=6R

Budget constraint:

48+16*6=C+6R

144=C+6R

144=6R+6R=12R

R=144/12=12

C=144-12R=144-12*6=72

B)New utility maximizing condition;

R/1=C/8

C=8R

48+16*8=C+8R

176=8R+8R=16R

R=176/16=11

C) Substitution effect: increase in wage, increase the opportunity cost of leisure,so leisure Decreases.

Income effect: increase in wage , increase labour income. Because leisure is normal good. So income effect lead to increase in leisure.

utility maximizing condition;

MUc/pc=MU(R)/w

R/pc=C/w

C=R*w/pc

Replace C with above equation in utility function to derive Compensated demand of R.

U=(Rw/pc)*R=(R^2*w)/pc

R=(Ū*Pc/w)^0.5 ( Compensated demand of R)

Initial utility=CR=72*12=864

R=(864*1/8)^0.5=108^0.5~10.4

So substitution effect=10.4-12=-1.6

Income effect=11-10.4=0.6

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Adam has a utility function U(C,R) = CR, where R is leisure and C is consumption...
Adam has a utility function U(C,R) = CR, where R is leisure and C is consumption per day. He has 16 hours per day to divide between work and leisure. Mark has a non-labor income of $48 per day. (a) If Mark is paid a wage of $6 per hour, how many hours of leisure will he choose per day? (b) As a result of a promotion, Mark is now paid $ 8 per hour. How will his leisure time...
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100...
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100 hours to divide between work and leisure per week wage is $20/hr 1. Write down budget constraint in terms of consumption and hours of work 2.Tom make decisions on hours of work, leisure and consumption to max. utility. Explain why we can collapse this problem to one in which he chooses hours of leisure only 3. Find optimal hours of work and total consumption...
John’s utility function is represented by the following: U(C,L) = (C-400)*(L-100), where C is expenditure on...
John’s utility function is represented by the following: U(C,L) = (C-400)*(L-100), where C is expenditure on consumption goods and L is hours of leisure time. Suppose that John receives $150 per week in investment income regardless of how much he works. He earns a wage of $20 per hour. Assume that John has 110 non-sleeping hours a week that could be devoted to work. a.Graph John’s budget constraint. b.Find John’s optimal amount of consumption and leisure. c.John inherits $300,000 from...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c, l) = c 2/3 l 1/3 . Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c,l) = c2/3l1/3. Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1 and the price of leisure...
NEED DETAIL PLZ Leo thinks leisure (R) and consuming goods (C) are perfect complements. Goods cost...
NEED DETAIL PLZ Leo thinks leisure (R) and consuming goods (C) are perfect complements. Goods cost $1 per unit. Leo wants to consume 5 units of goods per hour of leisure. Leo can work as much as he wants to at the wage rate of $15 an hour. He has no other source of income. One day has 24 hours. a. What is his utility function and budget constraint? b. How many hours a day will Leo choose to spend...
Each day, Luke must decide his leisure hours, L, and his consumption, C. His utility function...
Each day, Luke must decide his leisure hours, L, and his consumption, C. His utility function is given by the following equation ?(?, ?) = (? − 30)(? − 12). Luke receives $50 welfare payment per day. Show all the steps, with the definition of every new notation used in the steps. a) Suppose that Luke’s hourly wage is $5. Find Luke’s daily budget constraint equation and graph it. (5 pts.) b) If Luke’s wage is $5 per hour worked,...
2. An individual utility function is given by U(c,h) = c·h, where c represents consumption during...
2. An individual utility function is given by U(c,h) = c·h, where c represents consumption during a typical day and h hours of leisure enjoyed during that day. Let l be the hours of work during a day, then l + h = 24. The real hourly market wage rate the individual can earn is w = $20. This individual receives daily government transfer benefits equal to n = $100. For the graphical analysis of this individual’s utility maximization problem,...
Bernice is has the following utility over leisure (l) and consumption(c): u(l,c) = min{l,c}. We presume...
Bernice is has the following utility over leisure (l) and consumption(c): u(l,c) = min{l,c}. We presume that the wage is $9 and that the time allocation is T = 100. The price of consumption is normalized at $1. She has no other income. (a) How much will she consume and how much time will she work? (b) If the wage rises to $19, how much will she consume and how much time will she work? (c) Is the supply of...
Consider a consumer who has preferences over consumption (x) and leisure (L) represented by u(L, x)...
Consider a consumer who has preferences over consumption (x) and leisure (L) represented by u(L, x) = 10 ln L + 5 ln x. The consumer has 24 hours in the day (T = 24) to divide between work and leisure. The consumer can choose however many hours they want to work. For each hour of work they are paid a wage given by w = 10. Consumption (x) costs 1 per unit. (a) Initially suppose that the consumer has...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT