Question

Consider a consumer with the utility function u(x,y) = √x +y Suppose the cost producing good...

  1. Consider a consumer with the utility function u(x,y) = √x +y Suppose the cost producing good x is given by the cost function c(x) and the price of good y is $1 Illustrate that the solution to the social planner’s problem in terms of production of x is equivalent to the perfectly competitive market outcome. (You may assume that the consumer is endowed with an income of M>0)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a consumer with the utility function u(x,y) = √x +y Suppose the cost producing good...
Consider a consumer with the utility function u(x,y) = √x +y Suppose the cost producing good x is given by the cost function c(x) and the price of good y is $ Illustrate that the solution to the social planner’s problem in terms of production of x is equivalent to the perfectly competitive market outcome. (You may assume that the consumer is endowed with an income of M>0)
Suppose a consumer has the utility function u(x, y) = x + y. a) In a...
Suppose a consumer has the utility function u(x, y) = x + y. a) In a well-labeled diagram, illustrate the indifference curve which yields a utility level of 1. (b) If the consumer has income M and faces the prices px and py for x and y, respectively, derive the demand functions for the two goods. (c) What types of preferences are associated with such a utility function?
Consider a consumer with the following utility function: U(X, Y ) = XY. (a) Derive this...
Consider a consumer with the following utility function: U(X, Y ) = XY. (a) Derive this consumer’s marginal rate of substitution, MUX/MUY (b) Derive this consumer’s demand functions X∗ and Y∗. (c) Suppose that the market for good X is composed of 3000 identical consumers, each with income of $100. Derive the market demand function for good X. Denote the market quantity demanded as QX. (d) Use calculus to show that the market demand function satisfies the law-of-demand.
Consider a perfectly competitive market in good x consisting of 250 consumers with a utility function:...
Consider a perfectly competitive market in good x consisting of 250 consumers with a utility function: Denote Px to be the price for good x and suppose Py = 1. Each consumer has income equal u(x, y) = xy to 10. There are 100 firms producing good x according to the cost function c(x) = x^2 + 1. (a) Derive the demand curve for good x for a consumer in the market. (b) Derive the market demand curve for good...
Consider a consumer with the utility function U(x, y) = min(3x, 5y). The prices of the...
Consider a consumer with the utility function U(x, y) = min(3x, 5y). The prices of the two goods are Px = $5 and Py = $10, and the consumer’s income is $220. Illustrate the indifference curves then determine and illustrate on the graph the optimum consumption basket. Comment on the types of goods x and y represent and on the optimum solution.
Suppose a consumer has a utility function U(X,Y) = MIN (X,Y) + X + Y. Using...
Suppose a consumer has a utility function U(X,Y) = MIN (X,Y) + X + Y. Using a graph, illustrate the indifference curve that goes through the bundle X = 3, Y = 3. I have the answer but could someone explain to me how to approach the solution and what each part means.
A consumer derives utility from good X and Y according to the following utility function: U(X,...
A consumer derives utility from good X and Y according to the following utility function: U(X, Y) = X^(3/4)Y^(1/4) The price of good X is $15 while good Y is priced $10. The consumer’s budget is $160. What is the utility maximizing bundle for the consumer? .
Suppose a consumer has the utility function u(x,y)=x+y - (a) In a well labelled diagram illustrate...
Suppose a consumer has the utility function u(x,y)=x+y - (a) In a well labelled diagram illustrate the indifference curve which yields a utility level of 1 (b) If the consumer has income And faces the prices Px and Py for x and y, respectively, derive the demand function for the two goods (c) What types of preferences are associated with such a utility function?
Consider a consumer with preferences represented by the utility function: U(x,y) = 3x + 6 √...
Consider a consumer with preferences represented by the utility function: U(x,y) = 3x + 6 √ y   Are these preferences strictly convex? Derive the marginal rate of substitution Suppose, the utility function is: U(x,y) = -x +2 √ y   Are there any similarities or differences between the two utility functions?
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive...
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive the consumer’s marginal rate of substitution (b) Calculate the derivative of the MRS with respect to X. (c) Is the utility function homogenous in X? (d) Re-write the regular budget constraint as a function of PX , X, PY , &I. In other words, solve the equation for Y . (e) State the optimality condition that relates the marginal rate of substi- tution to...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT