Question

The Food Marketing Institute shows that 15% of households spend more than $100 per week on...

The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. Use z-table.

What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?

What is the probability that the sample proportion will be within +/- 0.02 of the population proportion for a sample of 1,400 households (to 4 decimals)?

Homework Answers

Answer #1

ans.....
(1) What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)
sample proportion will be within +/- 0.02 means 0.15 + or - 0.02
or we need to estimate z(0.17) and z(0.13)
z(0.17)= difference / standard error = (0.17-0.15) / squrt [ 0.15*0.85/800] = 1.5873
z(0.13) = - 1.5873
(2) What is the probability that the sample proportion will be within +/- 0.02 of the population proportion for a sample of 1,400 households (to 4 decimals)
the new sample size is 1400
standard error of the proportion of households spending = sqrt [ p x q / n ]
= sqrt [ 0.15*0.85/1400] = 0.0095
sample proportion will be within +/- 0.02 means 0.15 + or - 0.02
or we need to estimate z(0.17) and z(0.13)
z(0.17)= difference / standard error = (0.17-0.15) / squrt [ 0.15*0.85/1400] = 2.1053
z(0.13) = - 2.1053

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. Use z-table. What is the probability that the sample proportion will be within +/- 0.02 of the population proportion for a sample of 1,800 households (to 4 decimals)?
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 800 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 700 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals).    What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on...
The Food Marketing Institute shows that 15% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.15 and a sample of 600 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.16 and a sample of 600 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.17 and a sample of 600 households will be selected from the population. Use z-table. What is the probability that the sample proportion will be within +/- 0.02 of the population proportion for a sample of 1,200 households (to 4 decimals)?
The Food Marketing Institute shows that 18% of households spend more than $100 per week on...
The Food Marketing Institute shows that 18% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.18 and a sample of 700 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals).    What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on...
The Food Marketing Institute shows that 16% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.16 and a sample of 900 households will be selected from the population. Use z-table. Calculate (), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). 0.0130 What is the probability that the sample proportion will be within +/- 0.03 of the population proportion (to 4...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.17 and a sample of 600 households will be selected from the population. Use z-table. A) Calculate the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals). I got .0153 B) What is the probability that the sample proportion will be within +/- 0.03 of the population...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on...
The Food Marketing Institute shows that 17% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.17 and a sample of 600 households will be selected from the population. (1)What is the probability that the sample proportion will be within ±0.02 of the population proportion? (Round your answer to four decimal places.)