Question

A closed economy has the following Cobb-Douglas production function: F(KL) = K2/5 (EL)3/5, where the notation...

A closed economy has the following Cobb-Douglas production function: F(KL) = K2/5 (EL)3/5, where the notation is as in class. The depreciation rate is 1.5% and the saving rate is 20%. The economy is in steady state, where the population decreases at a rate 1% and capital K increases at a rate 1%. (a) Find the growth rates of the following variables (i) labor efficiency, E (ii) the number of workers per machine, L/K (iii) the average productivity of capital, Y/K (iv) the price of capital relative to the price r/w (v) the difference between labour income and capital income wL- rK (b) If the real GDP is 100 billion this year, find the number of machines next year. (c) Bu how many percentage points should the government change the savings rate so that the economy may converge to the golden rule steady state( use + for increase and – for decrease)?. How would the current generation feel about the change

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An economy has the following Cobb-Douglas production function: Y = Ka(LE)1-a The economy has a capital...
An economy has the following Cobb-Douglas production function: Y = Ka(LE)1-a The economy has a capital share of 1/3, a saving rate of 24 percent, a depreciation rate of 3 percent, a rate of population growth of 2 percent, and a rate of labor-augmenting technological change of 1 percent. It is in steady state. a. Does the economy have more or less capital than at the Golden Rule steady state? How do you know? To achieve the Golden Rule steady...
Assuming the following Cobb-Douglas production function is given for a closed economy without government. i. Where...
Assuming the following Cobb-Douglas production function is given for a closed economy without government. i. Where returns to capital = 0.5; and rate of depreciation of physical capital Determine the steady-state level of capital per worker. What is the savings rate at which the steady-state level of capital is achieved?             [6marks] ii Prove that the steady-state level of output is the ratio of the saving rate to the rate of depreciation                                                                       [6 marks] iii. Assuming that , what will be...
Consider the following production function: Y = A ̄K2 L1 , where Y is production, A...
Consider the following production function: Y = A ̄K2 L1 , where Y is production, A ̄ is productivity, K is capital, and L is labor. Let w denote the wage rate and r denote the rental rate of capital. 21 Suppose you solve the profit maximization problem of the firm: max A ̄K L wL rK. What is K,L the expression for wL ? Y (a) wL =1↵. Y (b) wL =↵. Y (c) wL = 1. Y3 (d)...
An economy has a Cobb–Douglas production function: Y=Kα(LE)1−αY=Kα(LE)1−α The economy has a capital share of 0.30,...
An economy has a Cobb–Douglas production function: Y=Kα(LE)1−αY=Kα(LE)1−α The economy has a capital share of 0.30, a saving rate of 42 percent, a depreciation rate of 5.00 percent, a rate of population growth of 2.50 percent, and a rate of labor-augmenting technological change of 4.0 percent. It is in steady state. Solve for capital per effective worker (k∗)(k∗), output per effective worker (y∗)(y∗), and the marginal product of capital. k∗=k∗= y∗=y∗= marginal product of capital =
In a solow-type economy with Cobb-Douglas production, assume that the population growth rate depends on the...
In a solow-type economy with Cobb-Douglas production, assume that the population growth rate depends on the current level of output per worker, y, so that n=my, where m is a positive constant. For simplicity, assume d=0 a) Find an expression for the growth rate of the capital-labor ratio, k̇ / k b) Find expressions for the steady states of y and k c) Find an expression for the growth rate of Y in steady state
Consider the following Cobb-Douglas production function: y(K,L) = 2K^(0.4)*L^(0.6), where K denotes the amount of capital...
Consider the following Cobb-Douglas production function: y(K,L) = 2K^(0.4)*L^(0.6), where K denotes the amount of capital and L denotes the amount of labour employed in the production process. a) Compute the marginal productivity of capital, the marginal productivity of labour, and the MRTS (marginal rate of technical substitution) between capital and labour. Let input prices be r for capital and w for labour. A representative firm seeks to minimize its cost of producing 100 units of output. b) By applying...
Consider two countries: Country A and Country B. Each country has the following Cobb-Douglas type production...
Consider two countries: Country A and Country B. Each country has the following Cobb-Douglas type production function: Country A: Y = (K0.5)(EL)0.5 Country B: Y = (K0.7)(EL)0.3 Unfortunately, your knowledge of Country A is a bit limited. You have pieces of information, but you don’t know the entire picture. o Savings rate (s): unknown for Country A and 14.29% for Country B o Steady-state value of capital per effective worker: unknown for both countries, but you have heard that Country...
Consider the following Cobb-Douglass production function?≡??(?,?):?=??1/3?2/3 where Y is output, the constant z measures productivity, K...
Consider the following Cobb-Douglass production function?≡??(?,?):?=??1/3?2/3 where Y is output, the constant z measures productivity, K is physical capital, and N is labor. Suppose ?=2, ?=0.16, ?=0.06, and ?=0.02. a. What are the steady-state (numerical) values of ?, ?, and ?? b. What is the golden-rule (numerical) level of capital per worker? c. If the government wants to achieve the golden rule level of k, should savings increase, decrease or remain unchanged? Solve for/obtain its (numerical) value. Explain briefly.
6.7 The production function Q=KaLb where 0≤ a, b≤1 is called a Cobb-Douglas production function. This...
6.7 The production function Q=KaLb where 0≤ a, b≤1 is called a Cobb-Douglas production function. This function is widely used in economic research. Using the function, show the following: a. The production function in Equation 6.7 is a special case of the Cobb-Douglas. b. If a+b=1, a doubling of K and L will double q. c. If a +b < 1, a doubling of K and L will less than double q. d. If a +b > 1, a doubling...
QUESTION 1 Suppose an economy can be characterized by a Cobb-Douglas production function with capital share...
QUESTION 1 Suppose an economy can be characterized by a Cobb-Douglas production function with capital share of 1/3, and A = 200. The investment rate is 0.12 (12%), the annual rate of growth of the labor force is 0.02 (2%), and the annual depreciation rate of capital is 0.04 (4%). According to the Solow growth model, this economy's steady state capital/labor ratio (capital per worker, k) is 4,000 8,000 10,000 12,000 None of the above. QUESTION 2 The steady state...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT