Question

Using the utility function U(x,y)=3x+y/2, px=7, py=1, and M=46 , what is the utility-maximizing demand for...

Using the utility function U(x,y)=3x+y/2, px=7, py=1, and M=46 , what is the utility-maximizing demand for y, y*?


Homework Answers

Answer #1

Maximize : U = 3x + y/2

Subject to : 7x + 1y = M = 46 -----------------Budget Contraint

We can see from above that It considers x and y as perfect substitutes and values x, 3(2) = 6 times over y.

Thus for this problem utility maximizing Condition will be :

(i) If px < 6py, He will consume only x.

(ii) If px < 6py, He will consume only y

(iii) If px < 6py, He will consume that lies on the above budget line.

Here, px = 7 > 6py. Thus will condume only y. So we have x = 0.

Putting this in budget constraint we get :

7*0 + y = 46 => y = 46

Thus utility maximizing demand for y is y = 46 units

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is the utility maximizing basket when I = 12, px = 2, py = 4,...
What is the utility maximizing basket when I = 12, px = 2, py = 4, u(x,y) = 3xy-21x
1) For a linear preference function u (x, y) = x + 2y, calculate the utility...
1) For a linear preference function u (x, y) = x + 2y, calculate the utility maximizing consumption bundle, for income m = 90, if a) px = 4 and py = 2 b) px = 3 and py = 6 c) px = 4 and py = 9
A consumer has utility function U(x, y) = x + 4y1/2 . What is the consumer’s...
A consumer has utility function U(x, y) = x + 4y1/2 . What is the consumer’s demand function for good x as a function of prices px and py, and of income m, assuming a corner solution? Group of answer choices a.x = (m – 3px)/px b.x = m/px – 4px/py c.x = m/px d.x = 0
8) Suppose a consumer’s utility function is defined by u(x,y)=3x+y for every x≥0 and y≥0 and...
8) Suppose a consumer’s utility function is defined by u(x,y)=3x+y for every x≥0 and y≥0 and the consumer’s initial endowment of wealth is w=100. Graphically depict the income and substitution effects for this consumer if initially Px=1 =Py and then the price of commodity x decreases to Px=1/2.
9. AJ has a utility function: u(x,y) = x2y3. The price of x is px =...
9. AJ has a utility function: u(x,y) = x2y3. The price of x is px = 1 and the price of y is py = 2, and AJ has income m = 15 to spend on the goods. To maximize his utility, how many units of y will AJ consume?
Assume that Sam has following utility function: U(x,y) = 2√x+y MRS=(x)^-1/2, px = 1/5, py =...
Assume that Sam has following utility function: U(x,y) = 2√x+y MRS=(x)^-1/2, px = 1/5, py = 1 and her income I = 10. price increase for the good x from px = 1/5 to p0x = 1/2. (a) Consider a price increase for the good x from px = 1/5 to p0x = 1/2. Find new optimal bundle under new price using a graph that shows the change in budget set and the change in optimal bundle when the price...
Let the Utility Function be U = X1/2Y PX = $1; PY = $2; I =...
Let the Utility Function be U = X1/2Y PX = $1; PY = $2; I = $15 a. What are X and Y if there is an increase in the price of good X to $2? (0.5 Points) b. Use the slutsky equation to show this impact and what is attributed to the: a. Income Effect (0.5 Points) b. Substitution Effect (0.5 Points) c. What is the reduction in Utility caused by this increase in price? (0.5 Points)
The consumer’s Utility Function is U(x,y) = X1/2Y1/2. Further Px = $5 and Py = $10...
The consumer’s Utility Function is U(x,y) = X1/2Y1/2. Further Px = $5 and Py = $10 and the consumer has $500 to spend. The values of x* = 50 and y* = 25 maximizes utility. The dual to the utility maximization problem is expenditure minimization problem where the consumer choose x and y to minimize the expenditure associated with achieving a specified level of utility. That is, Choose x and y to Minimize Expenditure 5x + 10y subject to U...
Given the following utility function and budget contraints: U(X,Y) = XY I = Px (X) +...
Given the following utility function and budget contraints: U(X,Y) = XY I = Px (X) + Py(Y) and given that: Py = 10 , Px=12 and I = 360 Fill in the blanks in the following table (round to two decimal places): Part 1:     What is the Value of Qx? Part 2:     What is the Value of Qy? Part 3:     What is the Optimal level of utility?
Suppose a consumer has the utility function u(x, y) = x + y. a) In a...
Suppose a consumer has the utility function u(x, y) = x + y. a) In a well-labeled diagram, illustrate the indifference curve which yields a utility level of 1. (b) If the consumer has income M and faces the prices px and py for x and y, respectively, derive the demand functions for the two goods. (c) What types of preferences are associated with such a utility function?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT