Question

(i) Find the marginal probability distributions for the random variables X1 and X2 with joint pdf...

(i) Find the marginal probability distributions for the random variables X1 and X2 with joint pdf

f(x1, x2) = 12x1x2(1-x2) , 0 < x1 <1 0 < x2 < 1 0 , otherwise

(ii) Calculate E(X1) and E(X2)

(iii) Are the variables X1 ¬and X2 stochastically independent?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(i) Find the marginal probability distributions for the random variables X1 and X2 with joint pdf...
(i) Find the marginal probability distributions for the random variables X1 and X2 with joint pdf                     f(x1, x2) = 12x1x2(1-x2) , 0 < x1 <1   0 < x2 < 1 , otherwise             (ii) Calculate E(X1) and E(X2)     (iii) Are the variables X1 ­and X2 stochastically independent? Given the variables in question 1, find the conditional p.d.f. of X1 given 0<x2< ½ and the conditional expectation E[X1|0<x2< ½ ].
4. (i) Find the marginal probability distributions for the random variables X1 and X2 with joint...
4. (i) Find the marginal probability distributions for the random variables X1 and X2 with joint pdf                     f(x1, x2) = 12x1x2(1-x2) , 0 < x1 <1   0 < x2 < 1 , otherwise             (ii) Calculate E(X1) and E(X2)     (iii) Are the variables X1 ­and X2 stochastically independent?
Let X1 and X2 be independent random variables with joint pdf f(x1, x2) =x1e^−(x1+x2), 0< x1<∞,...
Let X1 and X2 be independent random variables with joint pdf f(x1, x2) =x1e^−(x1+x2), 0< x1<∞, 0< x2<∞. Y1= 2X1 and Y2=X2−X1. I) Find g(y1, y2), the joint pdf of Y1, Y2 Include and draw the support. II) Find g1(y1), the marginal pdf of Y1. III) Find E(Y1).
(i) Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2)...
(i) Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2) = 4x1(1-x2) ,     0<x1<1  0<x2<1                                       0,                  otherwise (ii) For the same joint pdf, calculate E(X1X2) and E(X1+ X2) (iii) Calculate Var(X1X2)
if X1, X2 have the joint pdf f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1 and...
if X1, X2 have the joint pdf f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1 and 0,                  otherwise 1- Find the probability P(0<X1<1/3 , 0<X2<1/3) 2- For the same joint pdf, calculate E(X1X2) and E(X1 + X2) 3- Calculate Var(X1X2)
5) Let X1, X2, and X3 be independent random variables with the following probability density function,...
5) Let X1, X2, and X3 be independent random variables with the following probability density function, f(x) = 2 − 2x for 0 < x < 1; f(x) = 0 otherwise. a) Find the probability that X1 exceeds 1/2. b) Find the probability that exactly one of the three variables exceeds 1/2. 6) The pdf of X is fX(x) = 4xe−2x , x > 0. a) Find E(X). b) Find Var(X). 7) The joint pdf of X and Y is...
Let (X1, X2) have joint pdf f(x1, x2) = (2/9)x1x22, 0 <= x1 <= 1, 0...
Let (X1, X2) have joint pdf f(x1, x2) = (2/9)x1x22, 0 <= x1 <= 1, 0 <= x2 <= 3 (i) What is the distribution of Y = X1 + X2? (ii) What is the distribution of Y = X1 * X2? (iii) Find the expectation E(X1 + X2) (iv) Find the expectation E(X1X2)
Let X1 and X2 have the joint pdf f(x1,x2) = 8x1x2    0<x1 <x2 <1 0....
Let X1 and X2 have the joint pdf f(x1,x2) = 8x1x2    0<x1 <x2 <1 0. elsewhere What are the marginal pdfs of x1 and x2? Find the expected values of x1 and x2. 3.   What is the expected value of X1X2? (Hint: Define g(X1, X2) = X1X2 and extend the definition of expectation of function of a random variable to two variables as follows: E[g(X1, X2)] = ? ? g(x1, x2)f(x1, x2)dx1dx2. 4. Suppose that Y = X1/X2. What...
Let X =( X1, X2, X3 ) have the joint pdf f(x1, x2, x3)=60x1x22, where x1...
Let X =( X1, X2, X3 ) have the joint pdf f(x1, x2, x3)=60x1x22, where x1 + x2 + x3=1 and xi >0 for i = 1,2,3. find the distribution of X1 ? Find E(X1).
1. Consider the joint pdf f(x1,x2) = 3x1, if 0 ≤ x2 ≤ x1 ≤ 1...
1. Consider the joint pdf f(x1,x2) = 3x1, if 0 ≤ x2 ≤ x1 ≤ 1 0 elsewhere. (a) Calculate P(X1 < 3/4 ,X2 < 1/4). (b) Calculate E[3X1X2].
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT