Question

Given U(q1, q2) = q12/3q21/3. Budget constraint Y = p1(q1) + p2q2. Solve for Marshallian demand...

Given U(q1, q2) = q12/3q21/3. Budget constraint Y = p1(q1) + p2q2.

Solve for Marshallian demand and price.

Homework Answers

Answer #1

Step by step solution is provided in the pic attached here.

Q1=2/3 * m/p1 . Solving for p1 we get p1=2/3.m/Q1

Q2=1/3* m/p2. Solving for p2 we get p2= 1/3*m/Q2

Please cross check your question.Because we don't have to determine prices in these types of questions.Prices are simple given and customer doesn't have any control over them.Maybe we have to find price elasticity.

If you have any doubt , feel free to ask.

Don't forget to thumbs up , if you like the solution.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A consumer has utility function U(q1; q2) = 4(q1)^(.5) + q2, and income y = 10....
A consumer has utility function U(q1; q2) = 4(q1)^(.5) + q2, and income y = 10. Let the price of good 2 be p2 = 1, and suppose the price of good 1 increases from p1 = 1 to p1 = 2. Find the demand function for good 1.
A consumer has utility function U(q1, q2) = q1 + √q2, income Y= 8, and faces...
A consumer has utility function U(q1, q2) = q1 + √q2, income Y= 8, and faces prices p1= 4 and p2= 1. Find all consumption bundles that satisfy the necessary condition for a utility maximizing choice. Then determine which of these is optimal.
Diogo’s utility function is U(q1, q2)=q10.75q20.25 where q1 is chocolate candy and q2 is slices of...
Diogo’s utility function is U(q1, q2)=q10.75q20.25 where q1 is chocolate candy and q2 is slices of pie. If the price of a chocolate bar, p1, is $1, the price of a slice of pie, p2, is $2, and Y is $80, a.Now suppose price of chocolate bar increases to $2. What will be Diogo’s optimal bundle now? b. Underneath the above diagram, draw Diogo’s demand curve. Does Diogo’s utility rise as you move up along his demand curve? What happens...
Diogo has a utility function, U(q1, q2) = q1 0.8 q2 0.2, where q1 is chocolate...
Diogo has a utility function, U(q1, q2) = q1 0.8 q2 0.2, where q1 is chocolate candy and q2 is slices of pie. If the price of slices of pie, p2, is $1.00, the price of chocolate candy, p1, is $0.50, and income, Y, is $100, what is Diogo's optimal bundle? The optimal value3 of good q1 is q = units. (Enter your response rounded to two decimal places.) 1 The optimal value of good q2 is q2 = units....
Given this demand curve for coffee in lbs, Q1 = 2 -1*p1 + 0.5* p2 +...
Given this demand curve for coffee in lbs, Q1 = 2 -1*p1 + 0.5* p2 + .01*Y +ε1, where Q1 is the demand for coffee and p1 is the price of coffee per lb, p2 is the price per lb of a related good and Y is the consumer’s weekly budget (20 points) A. Which variable is the dependent variable and which are independent variables and why? B. What does each coefficient (parameter) mean as they apply to changes in...
Jaydon’s utility is estimated to be U(q1,q2)=20q1^0.5q2^0.5. Jaydon has an income of 500, p1 = 10,...
Jaydon’s utility is estimated to be U(q1,q2)=20q1^0.5q2^0.5. Jaydon has an income of 500, p1 = 10, and p2 = 20. Suppose the price of good 2 decreased to 10, while p1 and income remain the same. Find the values of the total effect, the substitution effect, and the income effect of the change in p2 on the demand of good 1 and good 2.
Suppose the Utility function of the consumer is given by U = x + 5y^3 Suppose...
Suppose the Utility function of the consumer is given by U = x + 5y^3 Suppose the price of x is given by p x and the price of y is given by p y and the budget income of the consumer is given by I. Price of x, Price of y and Income are always strictly positive. Assume interior solution. a) Write the statement of the problem b) Compute the parametric expressions of the equilibrium quantity of x &...
Goluki's preferences are given by the following utility function: U(q1, q2) =  q11/3 +  q21/3, where  q1 is the...
Goluki's preferences are given by the following utility function: U(q1, q2) =  q11/3 +  q21/3, where  q1 is the number of cups of tea and  q2 is the number of cookies. Select all that applies: a. Her preferences satisfy "more is better" b. Her indifference curves are downward sloping c. Her income-consumption curve is a straight line d. Cookies is an inferior good for her e. Her demand function for cookies is downward sloping f. Her Engel curve for tea is upward sloping
A consumer has utility functionU(q1, q2) = (q1)^(2)+2(q2)^(2), income Y= 24, and faces prices p1= 1...
A consumer has utility functionU(q1, q2) = (q1)^(2)+2(q2)^(2), income Y= 24, and faces prices p1= 1 and p2= 3. Find all consumption bundles that satisfy the necessary condition fora utility maximizing choice. Then determine which of these is optimal.
A consumer has the quasi-linear utility function U(q1,q2) = 64q1^(1/2) + q2 Assume p2 = 1...
A consumer has the quasi-linear utility function U(q1,q2) = 64q1^(1/2) + q2 Assume p2 = 1 and Y = 100. Find the consumer's compensating and equivalent variations for an increase in p1 from 1 to 2.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT