Question

(40 marks) Bob is deciding how much labour he should supply. He gets utility from consumption...

Bob is deciding how much labour he should supply. He gets utility from consumption of beer (given by C) and from leisure time (given by L), which he spends hanging out with his friend Doug. This utility is given by the following utility function: U(C, L) = ln(C) + θ ln(L) where the value of θ was determined by your student number and ln(C) denotes the natural logarithm of consumption etc. Given this utility function, Bob’s marginal utility from consumption is given by: MUC = ∂U ∂C = 1 C and his marginal utility from leisure is given by: MUL = ∂U ∂L = θ L Bob has 120 hours to allocate between working and leisure time. For every hour that he works he earns a wage of W. The value of this wage was determined by your student number. In addition to any income he gets from working Bob also gets $10 from his Grandmother. He spends all of his income (that is, what he gets from working plus the $10 from Grandma) on beer which costs $1 per unit. (a) If Bob devotes L hours of his time to leisure, how many hours does he work? Write out Bob’s budget constraint. (b) Suppose Bob is currently spending exactly half his time on leisure L = 60, could he raise his utility by increasing or decreasing the number of hours he works? Carefully explain your answer. (c) Solve for Bob’s optimal choice of hours worked, hours spent on leisure and beer consumption. Hint: see the solution to the two good problem at the end of this assignment. (d) Suppose Bob’s Grandmother now gives him $100 instead of $10. What would expect would happen to his consumption of beer, the number of hours he takes as leisure and his labour supply? You do not have to solve for Bob’s new optimal choices. However, you do have to explain why he changes his choices. (e) Suppose Bob’s hourly wage rate increases by $1. What would expect would happen to his consumption of beer, the number of hours he takes as leisure and his labour supply? Again, you do not have to solve for Bob’s new optimal choices, but you do have to explain why he changes his choices.

Theta=1, Wage=5, Beta=4, Y1=4

Homework Answers

Answer #1

D) as non Labor income increases, so both consumption & leisure rises, Labor supply falls.

Bcoz increase in non Labor income has income effect. , Which means that as income rises, so the individual should enjoy more leisure, & work less, still enjoy more consumption

E) now wage rises, so it has both income & substitution effect

Since wage has increased, so work for more hours, thus enjoy less leisure & work more, more earning

Again more Labor income is earned for same amount of working hours, thus enjoy more leisure & less work

So consmption will surely rise, but effect on Labor supply depends on which effect dominates more, substitution or income effect.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c, l) = c 2/3 l 1/3 . Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c,l) = c2/3l1/3. Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1 and the price of leisure...
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100...
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100 hours to divide between work and leisure per week wage is $20/hr 1. Write down budget constraint in terms of consumption and hours of work 2.Tom make decisions on hours of work, leisure and consumption to max. utility. Explain why we can collapse this problem to one in which he chooses hours of leisure only 3. Find optimal hours of work and total consumption...
Suppose the representative consumer’s preferences are given by the utility function, U(C, l) = aln C...
Suppose the representative consumer’s preferences are given by the utility function, U(C, l) = aln C + (1- a) ln l Where C is consumption and l is leisure, with a utility function that is increasing both the arguments and strictly quiescence, and twice differentiable. Question: The total quantity of time available to the consumer is h. The consumer earns w real wage from working in the market, receives endowment π from his/her parents, and pays the T lump-sum tax...
Robinson Crusoe obtains utility from the quantity of fish he consumes in one day (F), the...
Robinson Crusoe obtains utility from the quantity of fish he consumes in one day (F), the quantity of coconuts he consumes that day (C), and the hours of leisure time he has during the day (L)) according to the utility function: U = F1/4C1/4L1/2 Robinson's production of fish is given by: F = (NF)1/2 , where NF is the hours he spends fishing. Robinson's production of coconuts is given by: C = (NC)1/2 , where NC is the hours he...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2),...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2), where ct denotes the stream of consumption in period t and l, hours of leisure. He can choose to work only when he is young. If he works an hour, he can earn 10 dollars (he can work up to 100 hours). He can also use savings to smooth consumption over time, and if he saves, he will earn an interest rate of 10%...
Suppose that the consumer’s preferences are given by U(c,l)=2c ^(1/2) +2l ^(1/2) where c is the...
Suppose that the consumer’s preferences are given by U(c,l)=2c ^(1/2) +2l ^(1/2) where c is the level of consumption and l is leisure. The consumer has to allocate 50 hours between leisure and labour. The real wage rate is 10 per hour and the real non-wage income is 160. Assume that there is no government. Note that (∂c ^(1/2)) / (∂c) = (1/2) c^(-1/2) (a) Write the budget constraint of the household. (b) Solve for the tangency condition using the...
John’s utility function is represented by the following: U(C,L) = (C-400)*(L-100), where C is expenditure on...
John’s utility function is represented by the following: U(C,L) = (C-400)*(L-100), where C is expenditure on consumption goods and L is hours of leisure time. Suppose that John receives $150 per week in investment income regardless of how much he works. He earns a wage of $20 per hour. Assume that John has 110 non-sleeping hours a week that could be devoted to work. a.Graph John’s budget constraint. b.Find John’s optimal amount of consumption and leisure. c.John inherits $300,000 from...
Each day, Luke must decide his leisure hours, L, and his consumption, C. His utility function...
Each day, Luke must decide his leisure hours, L, and his consumption, C. His utility function is given by the following equation ?(?, ?) = (? − 30)(? − 12). Luke receives $50 welfare payment per day. Show all the steps, with the definition of every new notation used in the steps. a) Suppose that Luke’s hourly wage is $5. Find Luke’s daily budget constraint equation and graph it. (5 pts.) b) If Luke’s wage is $5 per hour worked,...
1. Consider the representative consumer’s problem as follows. The representative consumer maximizes utility by choosing the...
1. Consider the representative consumer’s problem as follows. The representative consumer maximizes utility by choosing the amount of consumption good C and the amount of leisure l . The consumer has h units of time available for leisure l and for working Ns , that is, h = l+Ns . Government imposes a proportional tax on the consumer’s wage income. The consumer’s after-tax wage income is then (1−t )w(h −l ), where 0 < t < 1 is the tax...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT