Question

The production function is q = (10KL)/(K+L) where L = labor, K= capital The cost function...

The production function is q = (10KL)/(K+L)

where L = labor, K= capital

The cost function is C = wL + vK where w = wages and v = cost of capital

Assume K is fixed in the short run at K = 20

a.) Find the short run cost function. Find also the short run average and marginal costs.

b.) The shut-down price is defined as the minimum of average variable cost. For this cost function, what is the shutdown price?

c.) Find the short run supply function. Don't forget to use your answer to part b.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the production function Q = f(L,K) = 10KL / K+L. The marginal products of labor...
Consider the production function Q = f(L,K) = 10KL / K+L. The marginal products of labor and capital for this function are given by MPL = 10K^2 / (K +L)^2, MPK = 10L^2 / (K +L)^2. (a) In the short run, assume that capital is fixed at K = 4. What is the production function for the firm (quantity as a function of labor only)? What are the average and marginal products of labor? Draw APL and MPL on one...
Given production function: Q=L3/5K1/5. Where L is labor, K is capital, w is wage rate, and...
Given production function: Q=L3/5K1/5. Where L is labor, K is capital, w is wage rate, and r is rental rate. What kinds of returns to scale does your firm face? Find cost minimizing level of L and K, and long run cost function.
A firm produces output according to the production function. Q=sqrt(L*K) The associated marginal products are MPL...
A firm produces output according to the production function. Q=sqrt(L*K) The associated marginal products are MPL = .5*sqrt(K/L) and MPK = .5*sqrt(L/K) (a) Does this production function have increasing, decreasing, or constant marginal returns to labor? (b) Does this production function have increasing, decreasing or constant returns to scale? (c) Find the firm's short-run total cost function when K=16. The price of labor is w and the price of capital is r. (d) Find the firm's long-run total cost function...
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C =...
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C = 3L + 12K. (For some reason variable "w" is not provided) a. Optimize labor usage in the short run if the firm has 9 units of capital and the product price is $3. b. Show how you can calculate the short run average total cost for this level of labor usage? c. Determine “MP per dollar” for each input and explain what the comparative...
A firm produces a product with labor and capital. Its production function is described by Q...
A firm produces a product with labor and capital. Its production function is described by Q = min(L, K). Let w and r be the prices of labor and capital, respectively. a) Find the equation for the firm’s long-run total cost curve as a function of quantity Q and input prices, w and r. b) Find the solution to the firm’s short-run cost minimization problem when capital is fixed at a quantity of 5 units (i.e., K = 5). Derive...
A firm has a production function of Q = 10L0.3K 0.6 . The price of L...
A firm has a production function of Q = 10L0.3K 0.6 . The price of L is w = 9 and the price of K is r = 18 . a. What is its short-run marginal cost curve? b. What is its average variable cost curve?
(2) Consider the production function f(L, K) = 2K √ L. The marginal products of labor...
(2) Consider the production function f(L, K) = 2K √ L. The marginal products of labor and capital for this function are given by MPL = K √ L , MPK = 2√ L. Prices of inputs are w = 1 per hour of labor and r = 4 per machine hour. For the following questions suppose that the firm currently uses K = 2 machine hours, and that this can’t be changed in the short–run. (e) What is the...
a firm produces a product with labor and capital as inputs. The production function is described...
a firm produces a product with labor and capital as inputs. The production function is described by Q=LK. the marginal products associated with this production function are MPL=K and MPK=L. let w=1 and r=1 be the prices of labor and capital, respectively a) find the equation for the firms long-run total cost curve curve as a function of quantity Q b) solve the firms short-run cost-minimization problem when capital is fixed at a quantity of 5 units (ie.,K=5). derive the...
A cost-minimizing firm has the following production function: Q=LK+2M. Where L denotes Labor, K denotes Capital,...
A cost-minimizing firm has the following production function: Q=LK+2M. Where L denotes Labor, K denotes Capital, and M denotes Materials. The prices for the inputs are as follows: w=$4, r=$8, and m=$1. The firm is operating in the long run. Answer the following questions as you solve for the total cost of producing 400 units of output. Assume an interior solution (i.e. positive values of all inputs). a) Set up constrained optimization problem of the firm: b) Write out the...
1. Consider the production function q=K2L0.5   a) Find the cost minimizing quantities of K and L...
1. Consider the production function q=K2L0.5   a) Find the cost minimizing quantities of K and L for q = 100, r as the price of K and w as the price of L. b) Find the cost minimizing quantities of K and L for q = 1000, r as the price of K and w as the price of L. Explain whether or not the output expansion [change from part a) to part b)] is labor saving or capital saving.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT