Question

If P = 15, TC=10 + 5q + q^2, and MC = 5 + 2q, find...

If P = 15, TC=10 + 5q + q^2, and MC = 5 + 2q, find the perfectly competitive firm's maximum profit.

If P = 15, TC=10 + 5q + q^2, and MC = 5 + 2q, find the perfectly competitive firm's profit-maximizing quantity of output.

Homework Answers

Answer #1

If P = 15, TC=10 + 5q + q^2, and MC = 5 + 2q, find the perfectly competitive firm's maximum profit.

The firm produces at MC=P

Where

5+2q=15

2q=10

q=5

P=15

Total revenue =P*Q=15*5=75

Total cost=10+5*5+5^2=60

Profit=TR-TC=75-60=15

The profit is $15

===========

If P = 15, TC=10 + 5q + q^2, and MC = 5 + 2q, find the perfectly competitive firm's profit-maximizing quantity of output.

The firm produces at MC=P

Where

5+2q=15

2q=10

q=5

The firm produces 5 units

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Suppose a monopolist faces the demand for its good or service equal to Q =...
1. Suppose a monopolist faces the demand for its good or service equal to Q = 130 - P. The firm's total cost TC = Q2 + 10Q + 100 and its marginal cost MC = 2Q + 10. The firm's profit maximizing output is 2. Suppose a monopolist faces the demand for its good or service equal to Q = 130 - P. The firm's total cost TC = Q2 + 10Q + 100 and its marginal cost MC...
Suppose a monopoly firm has the following Cost and Demand functions: TC=Q2 P=20-Q MC=2Q MR=20-2Q Carefully...
Suppose a monopoly firm has the following Cost and Demand functions: TC=Q2 P=20-Q MC=2Q MR=20-2Q Carefully explain what the firm is doing and why. Find the firm’s Profit maximizing Q Find the firm’s Profit maximizing P. Find the firm’s Profit. 2. Suppose because of an advertising campaign, which costs $150, the monopoly’s demand curve is: P=32-Q so its MR= 32-2Q Looking closely at the TC function and the demand curve, explain the effects of the advertising campaign on the equations...
Part A A demand curve is P = 10- Q. So its MR is A)5-2Q B)10-...
Part A A demand curve is P = 10- Q. So its MR is A)5-2Q B)10- 4Q C)10 - Q D)10 -2Q Part B A non- competitive firm's demand curve is P = 10- 2Q. So its MR is A)5-2Q B)10- 4Q C)10 - Q D)5 - Q Part C "If a firm with pricing power in the market faces a demand curve of P = 1800-2Q and marginal costs of MC = 200, how much is the equilibrium (profit...
Consider a firm with the demand function P(Q)=(50-2Q), and the total cost function TC(Q)=10,000+10Q. Find the...
Consider a firm with the demand function P(Q)=(50-2Q), and the total cost function TC(Q)=10,000+10Q. Find the profit maximizing quantity. Calculate the profit maximizing price (or the market price). Hint: MR(Q)=(50-4Q),
The total cost function for a firm in a perfectly competitive market is TC = 350...
The total cost function for a firm in a perfectly competitive market is TC = 350 + 15q + 5q2. At its profit maximizing quantity in the short-run, each firm is making a loss but chooses to stay open. Which of the following is/are necessarily true at the profit maximizing quantity? MR = 15 + 5q P>15 AR > 350/q + 15 + 5q Both A and B are true. Both B and C are true. All of the above...
1) The inverse demand curve a monopoly faces is p=110−2Q. The​ firm's cost curve is C(Q)=30+6Q....
1) The inverse demand curve a monopoly faces is p=110−2Q. The​ firm's cost curve is C(Q)=30+6Q. What is the​ profit-maximizing solution? 2) The inverse demand curve a monopoly faces is p=10Q-1/2 The​ firm's cost curve is C(Q)=5Q. What is the​ profit-maximizing solution? 3) Suppose that the inverse demand function for a​ monopolist's product is p = 7 - Q/20 Its cost function is C = 8 + 14Q - 4Q2 + 2Q3/3 Marginal revenue equals marginal cost when output equals...
Consider two firms with the cost function TC(q) = 5q (constant average and marginal cost,of 5),...
Consider two firms with the cost function TC(q) = 5q (constant average and marginal cost,of 5), facing the market demand curve Q = 53 – p (where Q is the total of the firms’ quantities, and p is market price). a. What will be each firm’s output and profit if they make their quantity choices simultaneously (as Cournot duopolists)? b. Now suppose Firm 1 is the Stackelberg leader (its decision is observed by Firm 2 prior to that firm’s decision)....
Consider a Cournot market with two firms that have TC(Q) =5Q. Demand is given by P=...
Consider a Cournot market with two firms that have TC(Q) =5Q. Demand is given by P= 200−2(Q1+Q2). A) Find firm 1’s profit as a function of Q1 and Q2 B) Find the equilibrium price, quantity sold by each firm, and profit for each firm.
Quantity (Q) Bottles per day Total Cost (TC) Marginal Cost (MC) (TC/Q) Total Revenue (TR) (P*Q)...
Quantity (Q) Bottles per day Total Cost (TC) Marginal Cost (MC) (TC/Q) Total Revenue (TR) (P*Q) Marginal Revenue (MR) (TR/Q) Economic profit/loss (Loss/Profit) 0 15 - 0 - (-15) 1 22 7 8 8 (-21) 2 27 5 16 8 (-16) 3 30 3 24 8 (-9) 4 32 2 32 8 (-2) 5 33 1 40 8 6 6 34 1 48 8 13 7 36 2 56 8 18 8 40 4 64 8 20 9 44 4...
Suppose a firms MR = 12-2Q. Further, suppose that the firm’s MC = 2. What is...
Suppose a firms MR = 12-2Q. Further, suppose that the firm’s MC = 2. What is the profit maximizing quantity (Q)? Show all your work and, most importantly, explain why your technique will lead to the profit maximizing output level