Question

Suppose a firm has production function f(x1, x2) = x1 + x2. How much output should...

Suppose a firm has production function f(x1, x2) = x1 + x2. How much output should the firm produce in the long run?

Homework Answers

Answer #1

There seems to be a perfect substitutability between the two inputs, X1 and X2. If assume that their prices are P1 and P2, then we have a long run equilibrium condition where MRTS = P1P2. In this case the marginal rate of technical substitution is 1 which indicates that the long run equilibrium condition has P2 = P1. Now if we observe that in the long run, P2>P1, it means using X2 is expensive and therefore the output is Q = X1.

Similarly, if we observe that in the long run, P2<P1, it means using X1 is expensive and therefore the output is Q = X2. This analysis indicates that the long run production depends upon the price level of two inputs.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose the production function of a firm is given by f (x1; x2) = min{x1, x2}...
Suppose the production function of a firm is given by f (x1; x2) = min{x1, x2} (a) Calculate the conditional demand functions of the firm assuming w1 = 2; w2 = 4, and y = 8 (b) Calculate the minimum cost of the firm to produce 8 units of the good when w1 = 2 and w2 = 4:
1. A firm has two variable factors of production, and its production function is f(x1,x2) =...
1. A firm has two variable factors of production, and its production function is f(x1,x2) = x1/2 1 x1/4 2 . The price of the output is 6. Factor 1 receives the wage $2, and factor 2 receives the wage $2. a. How many units of each factor will the firm demand? b. How much output will it produce? 2. Beth produces software. Her production function is f(x1,x2) = 3x1 + 2x2, where x1 is the amount of unskilled labor...
2 .Suppose the production function of a firm is given by f (x1, x2) = 2x1...
2 .Suppose the production function of a firm is given by f (x1, x2) = 2x1 + 4x2 (a) Calculate the conditional demand functions of the firm assuming w1 = 2; w2 = 3, and y = 8 (b) Calculate the minimum cost of the firm to produce 8 units of the good when w1 = 2 and w2 = 3
A firm uses two inputs x1 and x2 to produce output y. The production function is...
A firm uses two inputs x1 and x2 to produce output y. The production function is f(x1, x2) = (x13/2+ x2)1/2. The price of input 1 is 1 and the price of input 2 is 2. The price of output is 10. (a) Calculate Marginal Products for each input. Are they increasing or decreasing? Calculate Marginal Rate of Technical Substitution. Is it increasing or diminishing? (b) Draw two or more isoquants. Does this production function exhibit increasing, decreasing or constant...
A competitive firm’s production function is f(x1,x2)= 24x1^1/2x2^1/2. The price of factor 1 is 1, the...
A competitive firm’s production function is f(x1,x2)= 24x1^1/2x2^1/2. The price of factor 1 is 1, the price of factor 2 is 2 and the price of output is 4. (a) Write down the cost function in terms of both the inputs. (b) What is the long-run cost minimization condition for this firm? (c) In what proportions should x1 and x2 be used if the firm wants to minimize its costs?
1. Consider a firm with technology that can be represented by the following production function: f(x1,...
1. Consider a firm with technology that can be represented by the following production function: f(x1, x2) = min {x1, x2} + x2 Input 1 costs w1 > 0 per unit and input 2 costs w2 > 0 per unit. (a) Draw the isoquant associated with an output of 4. Make sure to label any intercepts and slopes. (b) Find the firm’s long-run cost function, c(w1, w2, y)
Consider production function f (x1, x2) = x11/2x21/3. The price of factor 1 is w1 =...
Consider production function f (x1, x2) = x11/2x21/3. The price of factor 1 is w1 = 12 and the price of factor 2 is w2 = 1. With x̄2 = 8, find the short-run cost function c(y). Find short-run AC(y), AVC(y), and MC(y) based on the answer to a. Write out the long-run cost minimization problem to find the cheapest way to produce y units of output. Write out the Lagrangian for the long-run cost minimization problem. Solve the long-run...
Consider a firm with production function given by f(x1, x2) = (x1)^1/4 (x2)^1/2 : Assume the...
Consider a firm with production function given by f(x1, x2) = (x1)^1/4 (x2)^1/2 : Assume the prices of inputs 1 and 2 are w1 and w2, respectively, and the market price of the product is p. (a) Find the levels of the inputs that maximize the profits of the firm (X1, X2) (b) Derive the supply function of the firm (i.e., y = f (x 1 ; x 2 ))
A firm’s production function is given as y=(x1)^(1/2) * (x2-1)^(1/2) where y≥0 for the output, x1≥0...
A firm’s production function is given as y=(x1)^(1/2) * (x2-1)^(1/2) where y≥0 for the output, x1≥0 for the input 1 and x2≥0 for the input 2. The prices of input 1 and input 2 are given as w1>0 and w2>0, respectively. Answer the following questions. Which returns to scale does the production function exhibit? Derive the long-run conditional input demand functions and the long-run cost function.
Suppose the market price that a firm can sell its product for is a function of...
Suppose the market price that a firm can sell its product for is a function of how much it and the firm's competitor produce so that p = 136 - (x1 + x2) where p is the selling price, x1 is the firm's production, and x2 is the competitor s production. The firm's cost function is 28 + 3.6*x1. If the firm's competitor produces x2 = 27 units, how much should the firm produce if it wants to maximize the...