Questions 1-17 are related to the following | ||||||||
Below are the values for two variables x and y obtained from a sample of size 5. We want to build a regression equation based the sample data. |
ŷ = b₀ + b₁x | ||
y | x | |
18 | 5 | |
25 | 10 | |
9 | 5 | |
30 | 15 | |
46 | 18 |
12 | Sum of squares total (SST) is, | |||||||
a | 753.9 | |||||||
b | 761.5 | |||||||
c | 769.2 | |||||||
d | 776.9 | |||||||
13 | Sum of squares regression (SSR) is, | |||||||
a | 676.50 | |||||||
b | 683.37 | |||||||
c | 690.20 | |||||||
d | 697.10 | |||||||
14 | The fraction of variations in y explained by x is: | |||||||
a | 0.7617 | |||||||
b | 0.8018 | |||||||
c | 0.8440 | |||||||
d | 0.8884 | |||||||
SUMMARY OUTPUT |
||||||
Regression Statistics |
||||||
Multiple R |
0.9426 |
|||||
R Square |
0.8884 |
|||||
Adjusted R Square |
0.8512 |
|||||
Standard Error |
5.3488 |
|||||
Observations |
5 |
|||||
ANOVA |
||||||
df |
SS |
MS |
F |
Significance F |
||
Regression |
1 |
683.3706 |
683.3706 |
23.8859 |
0.0164 |
|
Residual |
3 |
85.8294 |
28.6098 |
|||
Total |
4 |
769.2 |
||||
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
|
Intercept |
1.943 |
5.399 |
0.360 |
0.743 |
-15.240 |
19.126 |
x |
2.232 |
0.457 |
4.887 |
0.016 |
0.779 |
3.685 |
From the above regression result we can find the answers as
12. Option c
13. Option b
14. Option d
Get Answers For Free
Most questions answered within 1 hours.