Question

3.为了观察100家公司各自的投资y和利润x,已知y =α+βx+ e,并建议通过OLS估算α和β。 一种。假设样本中的每个公司都有相同的利润。这会产生什么问题? b. If the distribution of profits over firms were not normal, we...

3.为了观察100家公司各自的投资y和利润x,已知y =α+βx+ e,并建议通过OLS估算α和β。

一种。假设样本中的每个公司都有相同的利润。这会产生什么问题?

b. If the distribution of profits over firms were not normal, we would not be able to apply the CLR model. True, false, or uncertain? Explain.

c. If the conditional variance of investment (given profits) were not the same for all firms, we would unable to rely on the CLR model to justify our estimates. True, false, or uncertain? Explain.

Homework Answers

Answer #1

Solution:

a. Assuming here the term CLR, referred as Classical Linnear Regression. We wont be able to apply the CLR. So its a TRUE statement.

The basic assumtion of CLR model is the variable is normally distributed. We may sucecced to run the CLR in the package but it will give biased coefficient estimates and not reflect the actual variation in the Model.

b. If the conditional variation is different then we can not rely on CLR model. It is TRUE statement.

Due to variantion in conditional variance we will have a problem of Heterscedasticity. Which will lead inconstient estimates.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3.一家石油公司希望研究四种不同的汽油添加剂对平均汽油行驶里程的影响。该公司随机选择四组,每组六辆汽车,并为每种添加剂类型(W,X, Y和Z)分配一组六辆汽车。在此实验中使用的所有24辆汽车都具有相同的品牌和型号。分配有汽油添加剂的六辆汽车中的每一辆都使用适当的添加剂进行试驾,并记录试驾的汽油行驶里程。使用α= 0.01使用Excel 编写统计效果模型,并完整指定每个组件。陈述分析的必要假设。 执行适当的分析,确定要测试的假设,测试统计量,临界值和p值。陈述您的结论,并就肥料的使用提出任何具体建议。 使
3.一家石油公司希望研究四种不同的汽油添加剂对平均汽油行驶里程的影响。该公司随机选择四组,每组六辆汽车,并为每种添加剂类型(W,X, Y和Z)分配一组六辆汽车。在此实验中使用的所有24辆汽车都具有相同的品牌和型号。分配有汽油添加剂的六辆汽车中的每一辆都使用适当的添加剂进行试驾,并记录试驾的汽油行驶里程。使用α= 0.01使用Excel 编写统计效果模型,并完整指定每个组件。陈述分析的必要假设。 执行适当的分析,确定要测试的假设,测试统计量,临界值和p值。陈述您的结论,并就肥料的使用提出任何具体建议。 使用Tukey的调整并针对不同含量的气体添加剂进行成对比较。 找到并解释每种处理方式的99%置信区间。 气体种类 X w ^ ÿ ž 31.2 27.6 35.7 34.5 32.6 28.1 34 36.2 30.8 27.4 35.1 35.2 31.5 28.5 33.9 35.8 32 27.5 36.1 34.9 30.1 28.7 34.8 35.3