Question

Suppose x represents weekly meat consumption and y represents weekly vegetables consumption. Their prices are px...

Suppose x represents weekly meat consumption and y represents weekly vegetables consumption. Their prices are px and py. Paul’s utility function is U1(x,y) = x2y3 and Peter’s utility function is U2(x,y) = 2x + 3y.

a. Derive the utility level for both at the bundle (4,4) respectively. Does one enjoy the bundle (4,4) more than the other?

b. If the meat price px = 5, vegetables price py = 1, and each of them has a budget of 100. What are the optimal consumption of meat and vegetables for Paul and Peter respectively? Show detailed derivation.

Homework Answers

Answer #1

(a) Just put the bundle into the utility function of paul and peter. From that, we will get to know who is enjoy better at bundle (4,4).

(b) Paul's utility is a Cobb Douglas. The demand function is

Put the values mentioned in the question.

Peters's utility function is Perfect substitutes. Here Px>Py so he will consume all of Vegetables.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
9. AJ has a utility function: u(x,y) = x2y3. The price of x is px =...
9. AJ has a utility function: u(x,y) = x2y3. The price of x is px = 1 and the price of y is py = 2, and AJ has income m = 15 to spend on the goods. To maximize his utility, how many units of y will AJ consume?
Jane’s utility function has the following form: U(x,y)=x^2 +2xy The prices of x and y are...
Jane’s utility function has the following form: U(x,y)=x^2 +2xy The prices of x and y are px and py respectively. Jane’s income is I. (a) Find the Marshallian demands for x and y and the indirect utility function. (b) Without solving the cost minimization problem, recover the Hicksian demands for x and y and the expenditure function from the Marshallian demands and the indirect utility function. (c) Write down the Slutsky equation determining the effect of a change in px...
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy....
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy. Find the optimal values of x and y as a function of the prices px and py with an income level m. px and py are the prices of good x and y respectively. 2. Consider a utility function that represents preferences: u(x,y) = min{80x,40y} Find the optimal values of x and y as a function of the prices px and py with an...
Consider the utility function U(x,y) = xy Income is I=400, and prices are initially px =10...
Consider the utility function U(x,y) = xy Income is I=400, and prices are initially px =10 and py =10. (a) Find the optimal consumption choices of x and y. (b) The price of x changes, to px =40, while the price of y remains the same. What are the new optimal consumption choices for x and y? (c) What is the substitution effect? (d) What is the income effect?
1) For a linear preference function u (x, y) = x + 2y, calculate the utility...
1) For a linear preference function u (x, y) = x + 2y, calculate the utility maximizing consumption bundle, for income m = 90, if a) px = 4 and py = 2 b) px = 3 and py = 6 c) px = 4 and py = 9
. Suppose utility is given by the following function: u(x, y) = min(2x, 3y) Suppose Px...
. Suppose utility is given by the following function: u(x, y) = min(2x, 3y) Suppose Px = 4, Py = 6, and m = 24. Use this information to answer the following questions: (a) What is the no-waste condition for this individual? (b) Draw a map of indifference curves for these preferences. Be sure to label your axes, include the no-waste line, and draw at least three indifference curves. (c) Given prices and income, what is the utility-maximizing bundle of...
Emily's preferences can be represented by u(x,y)=x^1/4 y^3/4 . Emily faces prices (px,py) = (2,1) and...
Emily's preferences can be represented by u(x,y)=x^1/4 y^3/4 . Emily faces prices (px,py) = (2,1) and her income is $120. Her optimal consumption bundle is: __________ (write in the form of (x,y) with no space) Now the price of x increases to $3 while price of y remains the same Her new optimal consumption bundle is: ____________ (write in the form of (x,y) with no space) Her Equivalent Variation is: $ ____________
Emily's preferences can be represented by u(x,y)=x1/4 y3/4 . Emily faces prices (px,py) = (2,1) and...
Emily's preferences can be represented by u(x,y)=x1/4 y3/4 . Emily faces prices (px,py) = (2,1) and her income is $120. Her optimal consumption bundle is: _______ (write in the form of (x,y) with no space) Now the price of x increases to $3 while price of y remains the same Her new optimal consumption bundle is:_______  (write in the form of (x,y) with no space) Her Equivalent Variation is: $__________
Emily's preferences can be represented by u(x,y)=x1/4 y3/4 . Emily faces prices (px,py) = (2,1) and...
Emily's preferences can be represented by u(x,y)=x1/4 y3/4 . Emily faces prices (px,py) = (2,1) and her income is $120. a) Her optimal consumption bundle is:________ (write in the form of (x,y) with no space) Now the price of x increases to $3 while price of y remains the same b) Her new optimal consumption bundle is:_______  (write in the form of (x,y) with no space) c) Her Equivalent Variation is: $________
U(X,Y)=X2 Y2 (A) If we put x on the horizontal axis and y on the vertical...
U(X,Y)=X2 Y2 (A) If we put x on the horizontal axis and y on the vertical axis, what is stevens marginal rate of substitution as a function of x and y? (B) Suppose stevens in come $600 and the price of good X and Y are Px=2 and Py=6 respectively. what is stevens optimal consumption bundle, (X*,Y*) (that maximizes his utility)? (C) Now suppose the price of good y changes. with new prices, we observe that stevens marginal rate of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT