Question

Consider the utility function: u( x1 , x2 ) = 2√ x1 + 2√x2 a) Find...

Consider the utility function:

u( x1 , x2 ) = 2 x1 + 2x2

a) Find the Marshallian demand function. Use ( p1 , p2 ) to denote the exogenous prices of x1 and x2 respectively. Use y to denote the consumer's disposable income.

b) Find the indirect utility function and verify Roy's identity

c) Find the expenditure function

d) Find the Hicksian demand function

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A consumer has utility function U(x1,x2)= x1x2 / (x1 + x2) (a) Solve the utility maximization...
A consumer has utility function U(x1,x2)= x1x2 / (x1 + x2) (a) Solve the utility maximization problem. Construct the Marshallian demand function D(p,I) and show that the indirect utility function is V (p, I) = I / (p1+ 2 * sqrt (p1*p2) + p2) (b) Find the corresponding expenditure function e(p; u). HINT: Holding p fixed, V and e are inverses. So you can find the expenditure function by working with the answer to part (a). (c) Construct the Hicksian...
Consider the Cobb-Douglas utility function u(x1,x2)=x1^(a)x2^(1-a). a. Find the Hicksian demand correspondence h(p, u) and the...
Consider the Cobb-Douglas utility function u(x1,x2)=x1^(a)x2^(1-a). a. Find the Hicksian demand correspondence h(p, u) and the expenditure function e(p,u) using the optimality conditions for the EMP. b. Derive the indirect utility function from the expenditure function using the relationship e(p,v(p,w)) =w. c. Derive the Walrasian demand correspondence from the Hicksian demand correspondence and the indirect utility function using the relationship x(p,w)=h(p,v(p,w)). d. vertify roy's identity. e. find the substitution matrix and the slutsky matrix, and vertify the slutsky equation. f....
Consider the following Constant Elasticity of Substitution utility function U(x1,x2) = x1^p+x2^p)^1/p                         &nbs
Consider the following Constant Elasticity of Substitution utility function U(x1,x2) = x1^p+x2^p)^1/p                                                                                                                                           a. Show that the above utility function corresponds to (hint:use the MRS between good 1 and good 2. The ->refers to the concept of limits.                  1. The perfect substitute utility function at p=1 2. The Cobb-Douglas utility function as p -->0 3. The Leontiff (of min(x1,x2) as p--> -infinity b. For infinity<p<1, a given level of income I and prices p1 and p2. 1. Find the marshallian...
The utility function is given by u (x1,x2) = x1^0.5 + x2^0.5 1) Find the marginal...
The utility function is given by u (x1,x2) = x1^0.5 + x2^0.5 1) Find the marginal rate of substitution (MRSx1,x2 ) 2) Derive the demand functions x1(p1,p2,m) and x2(p1, p2,m) by using the method of Lagrange.
The utility function is given by u (x1, x2) = x1^0.5+x2^0.5 1) Find the marginal rate...
The utility function is given by u (x1, x2) = x1^0.5+x2^0.5 1) Find the marginal rate of substitution (MRSx1,x2 ) 2) Derive the demand functions x1(p1, p2, m) and x2(p1,p2, m) by using the method of Lagrange.
Consider the following utility function: U(x1,x2) X11/3 X2 Suppose a consumer with the above utility function...
Consider the following utility function: U(x1,x2) X11/3 X2 Suppose a consumer with the above utility function faces prices p1 = 2 and p2 = 3 and he has an income m = 12. What’s his optimal bundle to consume?
2. A consumer has the utility function U ( X1, X2 ) = X1 + X2...
2. A consumer has the utility function U ( X1, X2 ) = X1 + X2 + X1X2 and the budget constraint P1X1 + P2X2 = M , where M is income, and P1 and P2 are the prices of the two goods. . a. Find the consumer’s marginal rate of substitution (MRS) between the two goods. b. Use the condition (MRS = price ratio) and the budget constraint to find the demand functions for the two goods. c. Are...
Find the expenditure function, the Hicksian demand functions, and the Marshallian demand functions corresponding to the...
Find the expenditure function, the Hicksian demand functions, and the Marshallian demand functions corresponding to the indirect utility function V(p, r) = (a1/p1 + a2/p2)r. Note p is a vector of prices p1 and p2.
1. Using the following utility function, U(x1,x2) = x1x2+x1+2x2+2 Find the demand functions for both x1...
1. Using the following utility function, U(x1,x2) = x1x2+x1+2x2+2 Find the demand functions for both x1 and x2 (as functions of p1, p2, and m). Thank you!
Given a utility function for perfect complements: U(x1,x2) = min{x1,βx2}, where β is a positive num-...
Given a utility function for perfect complements: U(x1,x2) = min{x1,βx2}, where β is a positive num- ber, and a budget constraint: p1x1 + p2x2 = Y , where p1 and p2 are prices of good 1 and good 2 respectively, Y is the budget for the complements. Find the demand functions for good 1 and good 2.