(4) In this game, each of two players can volunteer some of their spare time planting and cleaning up the community garden. They both like a nicer garden and the garden is nicer if they volunteer more time to work on it. However, each would rather that the other person do the volunteering. Suppose that each player can volunteer 0, 1, 2, 3, or4 hours. If player 1 volunteers x hours and 2 volunteers y hours, then the resultant garden gives each of them a utility payoff equal to √ x + y. Each player also gets disutility from the work involved in gardening. Suppose that player 1 gets a disutility equal to x (and player 2 likewise gets a disutility equal to y). Hence, the total utility (payoff) of player 1 is Π1(x, y) = √ x + y−x, and that of player 2 is Π2(x, y) = √ x + y−y. Write down the best response set of each player to every strategy of the other players 1 .
(5) Determine the pure-strategy Nash equilibria of the game in exercise (4).
SOLVE 5 PLEASE
Get Answers For Free
Most questions answered within 1 hours.