Question

1. Consider the production function q=K2L0.5   a) Find the cost minimizing quantities of K and L...

1. Consider the production function q=K2L0.5  

a) Find the cost minimizing quantities of K and L for q = 100, r as the price of K and w as the price of L.

b) Find the cost minimizing quantities of K and L for q = 1000, r as the price of K and w as the price of L. Explain whether or not the output expansion [change from part a) to part b)] is labor saving or capital saving.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Without using a Lagrangian, find the cost minimizing levels of L and K for the production...
Without using a Lagrangian, find the cost minimizing levels of L and K for the production function q = L^.6K^.4 if the price of labor =10, the price of capital = 15, and desired output = 100. What is the total cost to produce that output?
A firm’s production function is Q(L,K) = K^1/2 + L. The firm faces a price of...
A firm’s production function is Q(L,K) = K^1/2 + L. The firm faces a price of labor, w, and a price of capital services, r. a. Derive the long-run input demand functions for L and K, assuming an interior solution. If the firm must produce 100 units of output, what must be true of the relative price of labor in terms of capital (i.e. w/r) in order for the firm to use a positive amount of labor? Graphically depict this...
Consider the production function q=aK + bL. a. Show that the cost-minimizing choice of K and...
Consider the production function q=aK + bL. a. Show that the cost-minimizing choice of K and L may not be unique. (The cost-minimizing K and L levels are those used at a firm’s cost-minimizing point; the levels are not unique if there is more than one optimal combination of K and L for any one isoquant.) b. Show on a diagram that, if the cost-minimizing choice of inputs is unique, it will generally entail the use of only K or...
a. A cost minimizing firm’s production is given by Q=L^(1/2)K^(1/2) . Suppose the desired output is...
a. A cost minimizing firm’s production is given by Q=L^(1/2)K^(1/2) . Suppose the desired output is Q=10. Let w=12 and r=4. What is this firm’s cost minimizing combination of K & L? What it the total cost of producing this output? b. Suppose the firm wishes to increase its output to Q=12. In the short run, the firm’s K is fixed at the amount found in (a), but L is variable. How much labor will the firm use? What will...
Consider a firm which has the following production function Q=f(L,K)=4?LK (MPL=2?(K/L) and MPK=2?(L/K). (a) If the...
Consider a firm which has the following production function Q=f(L,K)=4?LK (MPL=2?(K/L) and MPK=2?(L/K). (a) If the wage w= $4 and the rent of capital r=$1, what is the least expensive way to produce 16 units of output? (That is, what is the cost-minimizing input bundle (combination) given that Q=16?) (b) What is the minimum cost of producing 16 units? (c) Show that for any level of output Q, the minimum cost of producing Q is $Q.
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C =...
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C = 3L + 12K. (For some reason variable "w" is not provided) a. Optimize labor usage in the short run if the firm has 9 units of capital and the product price is $3. b. Show how you can calculate the short run average total cost for this level of labor usage? c. Determine “MP per dollar” for each input and explain what the comparative...
The production function is q = (10KL)/(K+L) where L = labor, K= capital The cost function...
The production function is q = (10KL)/(K+L) where L = labor, K= capital The cost function is C = wL + vK where w = wages and v = cost of capital Assume K is fixed in the short run at K = 20 a.) Find the short run cost function. Find also the short run average and marginal costs. b.) The shut-down price is defined as the minimum of average variable cost. For this cost function, what is the...
A firm produces output according to the production function. Q=sqrt(L*K) The associated marginal products are MPL...
A firm produces output according to the production function. Q=sqrt(L*K) The associated marginal products are MPL = .5*sqrt(K/L) and MPK = .5*sqrt(L/K) (a) Does this production function have increasing, decreasing, or constant marginal returns to labor? (b) Does this production function have increasing, decreasing or constant returns to scale? (c) Find the firm's short-run total cost function when K=16. The price of labor is w and the price of capital is r. (d) Find the firm's long-run total cost function...
A firm’s production function is Q! = min(4L ,5K ). The price of labor is w...
A firm’s production function is Q! = min(4L ,5K ). The price of labor is w and the price of capital is r. a) Derive the demand function of labor and capital respectively. How does the demand of capital change with the price of capital? b) Derive the long-run total cost function. Write down the equation of the long-run expansion path. c) Suppose capital is fixed at K = 8 in the short run. Derive the short-run total cost function....
Given production function: Q=L3/5K1/5. Where L is labor, K is capital, w is wage rate, and...
Given production function: Q=L3/5K1/5. Where L is labor, K is capital, w is wage rate, and r is rental rate. What kinds of returns to scale does your firm face? Find cost minimizing level of L and K, and long run cost function.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT