Question

A competitive firm’s production function is f(x1,x2)= 24x1^1/2x2^1/2. The price of factor 1 is 1, the...

A competitive firm’s production function is f(x1,x2)= 24x1^1/2x2^1/2. The price of factor 1 is 1, the price of factor 2 is 2 and the price of output is 4. (a) Write down the cost function in terms of both the inputs. (b) What is the long-run cost minimization condition for this firm? (c) In what proportions should x1 and x2 be used if the firm wants to minimize its costs?

Homework Answers

Answer #2

Part a)

Part b)

long run cost minimization condition

Part c)

In order to minimize cost , amount of input 1 used should be twice the amount of input 2 used

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider production function f (x1, x2) = x11/2x21/3. The price of factor 1 is w1 =...
Consider production function f (x1, x2) = x11/2x21/3. The price of factor 1 is w1 = 12 and the price of factor 2 is w2 = 1. With x̄2 = 8, find the short-run cost function c(y). Find short-run AC(y), AVC(y), and MC(y) based on the answer to a. Write out the long-run cost minimization problem to find the cheapest way to produce y units of output. Write out the Lagrangian for the long-run cost minimization problem. Solve the long-run...
1. A firm has two variable factors of production, and its production function is f(x1,x2) =...
1. A firm has two variable factors of production, and its production function is f(x1,x2) = x1/2 1 x1/4 2 . The price of the output is 6. Factor 1 receives the wage $2, and factor 2 receives the wage $2. a. How many units of each factor will the firm demand? b. How much output will it produce? 2. Beth produces software. Her production function is f(x1,x2) = 3x1 + 2x2, where x1 is the amount of unskilled labor...
A firm’s production function is given as y=(x1)^(1/2) * (x2-1)^(1/2) where y≥0 for the output, x1≥0...
A firm’s production function is given as y=(x1)^(1/2) * (x2-1)^(1/2) where y≥0 for the output, x1≥0 for the input 1 and x2≥0 for the input 2. The prices of input 1 and input 2 are given as w1>0 and w2>0, respectively. Answer the following questions. Which returns to scale does the production function exhibit? Derive the long-run conditional input demand functions and the long-run cost function.
Consider a firm with production function given by f(x1, x2) = (x1)^1/4 (x2)^1/2 : Assume the...
Consider a firm with production function given by f(x1, x2) = (x1)^1/4 (x2)^1/2 : Assume the prices of inputs 1 and 2 are w1 and w2, respectively, and the market price of the product is p. (a) Find the levels of the inputs that maximize the profits of the firm (X1, X2) (b) Derive the supply function of the firm (i.e., y = f (x 1 ; x 2 ))
Suppose a firm has production function f(x1, x2) = x1 + x2. How much output should...
Suppose a firm has production function f(x1, x2) = x1 + x2. How much output should the firm produce in the long run?
1. Consider a firm with technology that can be represented by the following production function: f(x1,...
1. Consider a firm with technology that can be represented by the following production function: f(x1, x2) = min {x1, x2} + x2 Input 1 costs w1 > 0 per unit and input 2 costs w2 > 0 per unit. (a) Draw the isoquant associated with an output of 4. Make sure to label any intercepts and slopes. (b) Find the firm’s long-run cost function, c(w1, w2, y)
(Unconstrained Optimization-Two Variables) Consider the function: f(x1, x2) = 4x1x2 − (x1)2x2 − x1(x2)2 Find a...
(Unconstrained Optimization-Two Variables) Consider the function: f(x1, x2) = 4x1x2 − (x1)2x2 − x1(x2)2 Find a local maximum. Note that you should find 4 points that satisfy First Order Condition for maximization, but only one of them satisfies Second Order Condition for maximization.
Problem 3 [24 marks] A competitive firm uses two inputs, capital (?) and labour (?), to...
Problem 3 [24 marks] A competitive firm uses two inputs, capital (?) and labour (?), to produce one output, (?). The price of capital, ??, is $1 per unit and the price of labor, ??, is $1 per unit. The firm operates in competitive markets for outputs and inputs, so takes the prices as given. The production function is ?(?,?) = 3?0.25?0.25. The maximum amount of output produced for a given amount of inputs is ? = ?(?,?) units. a)...
Consider a firm whose production technology can be represented by a production function of the form...
Consider a firm whose production technology can be represented by a production function of the form q = f(x1, x2) = x α 1 x 1−α 2 . Suppose that this firm is a price taker in both input markets, with the price of input one being w1 per unit and the price of input two being w2 per unit. 1. Does this production technology display increasing returns to scale, constant returns to scale, decreasing returns to scale, or variable...
A firm’s production function is Q! = min(4L ,5K ). The price of labor is w...
A firm’s production function is Q! = min(4L ,5K ). The price of labor is w and the price of capital is r. a) Derive the demand function of labor and capital respectively. How does the demand of capital change with the price of capital? b) Derive the long-run total cost function. Write down the equation of the long-run expansion path. c) Suppose capital is fixed at K = 8 in the short run. Derive the short-run total cost function....