Question

Consider two market segments with the following demand functions: Market segment 1: Q1 P= 10-2P Market...

Consider two market segments with the following demand functions:

Market segment 1: Q1 P= 10-2P

Market segment 2: Q2 P= 10-4P

Suppose that MC of production is 6.

What is the optimal pricing policy for this firm?

Homework Answers

Answer #1

If you are satisfied with a answer plz upvote thank you i really need that

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A monopoly serves two markets with demand functions of Q1(p) = X-2p and Q2(p) = 10X...
A monopoly serves two markets with demand functions of Q1(p) = X-2p and Q2(p) = 10X + 50 - 2p, where X is 5. Determine the optimal two-part tariff for each market if the marginal costs are 10?
Consider the Cournot model with market demand function p(q_1, q_2)=17-q_1-q_2p(q1​,q2​)=17−q1​−q2​, and two different cost functions for...
Consider the Cournot model with market demand function p(q_1, q_2)=17-q_1-q_2p(q1​,q2​)=17−q1​−q2​, and two different cost functions for each firm: c_1(q_1)=q_1c1​(q1​)=q1​, c_2(q_2)=3q_2c2​(q2​)=3q2​. In the pure NE, firm 1 produces: and firm 2 produces: In equilibrium, the market price is: Show your steps. Remember to write down the profit function of each firm and solve for their best response functions. Which firm has a bigger market share? Explain.
Consider three firms that face market demand P = 101 - Q. The cost functions are...
Consider three firms that face market demand P = 101 - Q. The cost functions are C1(q1)=6(q1^2) for firm 1, C2(q2)=4(q2^2) for firm 2, and C3(q3)=4q(3^2) for firm 3. Firm 1 is the Stackelberg leader and firms 2 and 3 are the followers. What is firm 1's equilibrium output q1^*?
3. (i) A monopolist faces the following demand and total cost functions: Q1 = 65 -1/2P,...
3. (i) A monopolist faces the following demand and total cost functions: Q1 = 65 -1/2P, TC = Q2 + 10Q + 50 (a) Calculate the profit maximizing output and price of the monopolist. Calculate the resulting profit. (12 points) (b) Suppose the government imposes an excise tax of $30 on the production and sale of the product. Calculate the resulting optimal profit maximizing output and price for the monopolist. Also determine the level of profit. (12 points) (c) If...
Consider the Stackelberg model with demand function p(q_1, q_2)=10-q_1-q_2p(q1​,q2​)=10−q1​−q2​ and cost functions c_1(q_1)=q_1c1​(q1​)=q1​, c_2(q_2)=2q_2c2​(q2​)=2q2​. Draw the...
Consider the Stackelberg model with demand function p(q_1, q_2)=10-q_1-q_2p(q1​,q2​)=10−q1​−q2​ and cost functions c_1(q_1)=q_1c1​(q1​)=q1​, c_2(q_2)=2q_2c2​(q2​)=2q2​. Draw the game tree and solve for the pure SPE. Write down each firm's strategy in the pure SPE here: Firm 1:, Firm 2:
Consider the following supply and demand functions qD= 8-p qS= -4 +2p Assuming the market is...
Consider the following supply and demand functions qD= 8-p qS= -4 +2p Assuming the market is distortion free, what is the total welfare level? W= ??
Consider a duopoly with two firms with the cost functions: Firm 1: C1(q1)=5q1 Firm 2: C2(q2)=5q2...
Consider a duopoly with two firms with the cost functions: Firm 1: C1(q1)=5q1 Firm 2: C2(q2)=5q2 The firms compete in a market with inverse demand p = 300 - 8Q where Q=q1+q2. The firms compete in a Cournot fashion by choosing output simultaneously.   What is the Nash-Cournot equilibrium output of firm 1? Round to nearest .1
Consider two identical firms competing in a market described by: • (Inverse) Demand: P = 50...
Consider two identical firms competing in a market described by: • (Inverse) Demand: P = 50 − Q , where Q = q1 + q2 • Cost Firm 1: C1 = 20q1 +q1^2 • Cost Firm 2: C2 = 20q2 + q2^2 a. (1 point) What is firm 1’s marginal cost? Firm 2’s marginal cost? What can you observe about these two firms? b.(2 points) What are the equilibrium price (P∗), production quantities (q∗1,q∗2), and profits(π∗1,π∗2), if these firms are...
Consider a market with two firms whose products are identical. The market demand curve is p...
Consider a market with two firms whose products are identical. The market demand curve is p = a − bq where a > 0 and b > 0, and where q = q1 + q2. Firm i’s profits are πi(q1, q2) = pqi − cqi . Assume that the firms move in sequence, with firm 1 choosing q1 first, and then firm 2 choosing q2; however, assume firm 2 observes q1 before choosing q2. (a) What is a Nash equilibrium...
Consider a market with two identical firms. The market demand is P = 26 – 2Q,...
Consider a market with two identical firms. The market demand is P = 26 – 2Q, where Q = q1 + q2. MC1 = MC2 = 2. 1. Solve for output and price with collusion. 2. Solve for the Cournot-Nash equilibrium. 3. Now assume this market has a Stackelberg leader, Firm 1. Solve for the quantity, price, and profit for each firm. 4. Assume there is no product differentiation and the firms follow a Bertrand pricing model. Solve for the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT