Question

1.Suppose that the total benefit depends on the level Q of a particular activity with total...

1.Suppose that the total benefit depends on the level Q of a particular activity with total benefits given by B(Q) = 40Q - Q 2 and total costs given by C(Q) = 300 + 20Q

a. Write out the equation for net benefits.

b. What are net benefits when Q = 3? Show calculations.

c. Write out the equation for marginal net benefits.

d. What are the marginal net benefits when Q = 3

e. Can you infer from your answer to question

f. whether the net benefit function is increasing, decreasing or flat at Q = 3? Explain.

g. What is the marginal cost at Q = 8? Explain.

h. Which level of activity maximizes net benefits? Explain.

i. What are the net benefits at that level of activity? Explain.

Homework Answers

Answer #1

a) Net benefits = total benefits - total costs

Net benefits = [40Q - Q2] - [300+20Q] -

Net benefits = -Q2 - 300 + 20Q

b) at Q = 3

Net benefits =  -Q2 - 300 + 20Q =-32 - 300 + 20x3

Net benefits = -249

c) Marginal net benefits = d (Net benefits)/dQ

Marginal net benefits =d(-Q2 - 300 + 20Q)/dQ

Marginal net benefits = -2Q +20

d) at Q = 3

Marginal net benefits = -2Q+20

Marginal net benefits = -2x3 + 20 = 14

g) Marginal cost = d [ C(Q)]/dQ

MC = d [300+20Q]/dQ

MC = 20

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that the total benefit and total cost from a continuous activity are, respectively, given by...
Suppose that the total benefit and total cost from a continuous activity are, respectively, given by the following equations: B(Q) = 100 + 36Q – 4Q2 and C(Q) =80 + 12Q. (Note: MB(Q) = 36 – 8Q and MC(Q) = 12.) Instructions: Use a negative sign (-) where appropriate. a. Write out the equation for the net benefits. N(Q) = ______________ +________________  Q +________________  Q2 b. What are the net benefits when Q = 1? Q = 5? Net benefits when Q...
Assume that total benefit from a continuous decision, involving a control variable Q, is: TB =...
Assume that total benefit from a continuous decision, involving a control variable Q, is: TB = 25Q – 2.5Q2 and the associated total cost is: TC(Q) = 5 + 4Q2. With the total benefit and total cost functions (equations) given above: Estimate the value of total benefit when the control variable Q is 3. Clearly show your steps and calculations. Estimate the marginal benefit when the control variable Q is 3. Clearly show your steps and calculations. Determine the level...
Suppose total benefits and total costs are given by TB(Q) = 220Q – 15Q2 and TC(Q)...
Suppose total benefits and total costs are given by TB(Q) = 220Q – 15Q2 and TC(Q) = 40Q. What level of Q will yield the maximum net benefits? Select one: a. 7 b. 6 c. 10/9 d. 150/20
Level of Total Marginal Net Activity Benefit Cost Benefit Cost Benefit _____         0           xx          ...
Level of Total Marginal Net Activity Benefit Cost Benefit Cost Benefit _____         0           xx           xx             0 200               30          _____                   _____                   _____       _____       _____                   100        _____                   230 _____       _____                   _____                   50           270 450               _____                   _____                   65           _____        _____       255        30           _____                   _____        500               _____                   _____                  75           _____        Please answer the following three questions referred to the table:...
Complete the table below. Clearly show the basis for each column estimates. Control Variable Total Benefits...
Complete the table below. Clearly show the basis for each column estimates. Control Variable Total Benefits Total Cost TC(Q) Net Benefits NB(Q) Marginal Benefit MB(Q) Marginal Cost MC(Q) Marginal Net Benefits MNB(Q) Q TB(Q) 100 1200 900 250 80 102 1670 90 104 2110 100 106 2520 110 108 2900 120 110 3250 130 112 3570 140 114 3860 150 116 4120 160 118 4350 170 120 4550 180 At what level of the control variable are the net benefits...
Suppose a product's revenue function is given by R(q)=−7q^2+200q, where R(q) is in dollars and q...
Suppose a product's revenue function is given by R(q)=−7q^2+200q, where R(q) is in dollars and q is the number of units sold. Use the marginal revenue function to find the approximate revenue generated by selling the 39th unit. Marginal revenue= ? dollars per unit A company selling widgets has found that the number of items sold, x, depends upon the price, p at which they're sold, according the equation x=40000√5p+1 Due to inflation and increasing health benefit costs, the company...
Suppose the graph below shows the benefit to a commercial fishery given reductions in N loads....
Suppose the graph below shows the benefit to a commercial fishery given reductions in N loads. What is the marginal benefit received from increasing N reductions from 400,000 to 500,000lbs? Quantity of N reductions (lbs) Total Fishery Benefits 0 0 100,000 $1,000,000 200,000 $1,800,000 300,000 $2,400,000 400,000 $2,700,000 500,000 $2,900,000 600,000 $3,000,000 700,000 $3,050,000 $2,900,000 $5.8 per pound of N reduced $2.9 per pound of N reduced $2,00 per pound of N reduced Suppose the graph below shows the benefit...
Consider the following total cost function for an individual firm: C(q) = 10+ q + (1/4)q^2...
Consider the following total cost function for an individual firm: C(q) = 10+ q + (1/4)q^2 The industry demand is estimated to be: Q = 100 - P 1) Now suppose there is a monopolist facing the industry demand. Write down the monopolist's pro t function. 2) What is the equation of the monopolists marginal revenue function? Also, explain how the monopolist's marginal revenue function differs from the marginal revenue function of a firm in a long-run perfectly competitive market....
The demand for product Q is given by Q = 136 -.4P and the total cost...
The demand for product Q is given by Q = 136 -.4P and the total cost of Q by: STC = 3000 + 40Q - 5Q^2 + 1/3Q^3 A. Find the price function and then the TR function. See Assignment 3 or 4 for an example. B. Write the MR and MC functions below. Remember: MR = dTR/dQ and MC = dSTC/dQ. See Assignment 5 for a review of derivatives. C.What positive value of Q will maximize total profit?  Remember, letting...
Q TB TC NB MB MC 0 $0 0 $0 - - 1 27 35 2...
Q TB TC NB MB MC 0 $0 0 $0 - - 1 27 35 2 65 10 3 85 30 4 51 14 5 60 8 6 5 20 The attached spreadsheet includes incomplete information on the total benefits, total costs, net benefits, marginal benefits, and marginal costs of producing different quantities of output for a generic company. First, fill in the empty cells in the attached spreadsheet. What is the marginal benefit of producing the second unit of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT