Question

Suppose, alternatively, that leisure and consumption goods are perfect substitutes. In this case, an indiference curve...

Suppose, alternatively, that leisure and consumption goods are perfect substitutes. In this case, an indiference curve is described by the equation i = al + bC, where a and b are positive constants, and u is the level of utility. That is, a given indiference curve has a particular value for u, with higher indiference curves having higher values for u. (a) Show what the consumer’s indiference curves look like when consumption and leisure are perfect substitutes, and determine graphically and algebraically what consumption bundle the consumer chooses. Show that the consumption bundle the consumer chooses depends on the relationship between a/b and w, and explain why. (b) Do you think it likely that any consumer would treat consumption goods and leisure as perfect substitutes?

Homework Answers

Answer #1

(a) In case of perfecf substitute goods the Indifference curve will be at a constant slope. The marginal rate of substitution will be stable or constant. The consumer will be struck between the two goods at a fixed ratio. Because he/she will have the willingness for both the good at fixed rate.

The MRS will either be zero or infinite.

(b) It would have least changes because the consumer's first priority would be consumption goods. It may rare chance of being a perfect substitute because they both gove different level of satisfaction depending on the income of the consumer.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the labor-leisure model, the representative consumer receives satisfaction from consumption of goods (C) and from...
In the labor-leisure model, the representative consumer receives satisfaction from consumption of goods (C) and from the consumption of Leisure (L). Let C be the composite good with price $1 and L determines the number of hours of leisure this person consumes. Therefore U = f(C,L) for this consumer. This consumer’s consumption is constrained by time and income. Let her non-labor income, V, be $1200 per week, let the hourly wage rate be $8 and h be the number of...
4. Suppose a consumer has perfect substitutes preference such that good x1 is twice as valuable...
4. Suppose a consumer has perfect substitutes preference such that good x1 is twice as valuable as to the consumer as good x2. (a) Find a utility function that represents this consumer’s preference. (b) Does this consumer’s preference satisfy the convexity and the strong convex- ity? (c) The initial prices of x1 and x2 are given as (p1, p2) = (1, 1), and the consumer’s income is m > 0. The prices are changed, and the new prices are (p1,p2)...
1. A consumer has the utility function U = min(2X, 5Y ). The budget constraint isPXX+PYY...
1. A consumer has the utility function U = min(2X, 5Y ). The budget constraint isPXX+PYY =I. (a) Given the consumer’s utility function, how does the consumer view these two goods? In other words, are they perfect substitutes, perfect complements, or are somewhat substitutable? (2 points) (b) Solve for the consumer’s demand functions, X∗ and Y ∗. (5 points) (c) Assume PX = 3, PY = 2, and I = 200. What is the consumer’s optimal bundle? (2 points) 2....
Suppose a consumer views two goods, X and Y, as perfect complements. Her utility function is...
Suppose a consumer views two goods, X and Y, as perfect complements. Her utility function is given by U = MIN [2X, Y]. Sketch the graph of the consumers indifference curve that goes through the bundle X = 5 and Y = 6. Put the amount of Y on the vertical axis, and the amount of X on the horizontal axis. Which of the three assumptions that we made about consumer preferences is violated in this case?
Suppose a consumer views two goods, X and Y, as perfect complements. Her utility function is...
Suppose a consumer views two goods, X and Y, as perfect complements. Her utility function is given by U = MIN [2X, Y]. Sketch the graph of the consumers indifference curve that goes through the bundle X = 5 and Y = 4. Put the amount of Y on the vertical axis, and the amount of X on the horizontal axis. Which of the three assumptions that we made about consumer preferences is violated in this case?
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A...
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A consumer has the utility function U(x1, x2) = min{2x1, 5x2}, where “min” is the minimum function, and x1 and x2 are the amounts she consumes of Good 1 and Good 2. Her income is M > 0. (a) What condition must be true of x1 and x2, in any utility-maximising bundle the consumer chooses? Your answer should be an equation involving (at least) these...
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A...
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A consumer has the utility function U(x1, x2) = min{2x1, 5x2}, where “min” is the minimum function, and x1 and x2 are the amounts she consumes of Good 1 and Good 2. Her income is M > 0. (a) What condition must be true of x1 and x2, in any utility-maximising bundle the consumer chooses? Your answer should be an equation involving (at least) these...
1. Consider the general form of the utility for goods that are perfect complements. a) Why...
1. Consider the general form of the utility for goods that are perfect complements. a) Why won’t our equations for finding an interior solution to the consumer’s problem work for this kind of utility? Draw(but do not submit) a picture and explain why (4, 16) is the utility maximizing point if the utility is U(x, y) = min(2x, y/2), the income is $52, the price of x is $5 and the price of y is $2. From this picture and...
Suppose u=u(C,L)=4/5 ln⁡(C)+1/5 ln⁡(L), where C = consumption goods, L = the number of days taken...
Suppose u=u(C,L)=4/5 ln⁡(C)+1/5 ln⁡(L), where C = consumption goods, L = the number of days taken for leisure such that L=365-N, where N = the number of days worked at the nominal daily wage rate of $W. The government collects tax on wage income at the marginal rate of t%. The nominal price of consumption goods is $P. Further assume that the consumer-worker is endowed with $a of cash gift. a) Write down the consumer-worker's budget constraint. b) Write down...
A person's utility fromm goods A and B is U(A,B)= A x B. The marginal utilities...
A person's utility fromm goods A and B is U(A,B)= A x B. The marginal utilities of each goods are MUa=B and MUb=A. The person has $120 income to spend on the two goods and the price of both goods equals $1. a) Write the equation for the budget line and sketch it on a graph – identifying relevant intercepts and slope – placing good A on the horizontal axis. b) Find the quantities of A and B that maximize...