Question

Suppose country A has the following Cobb-Douglas production function q = AKαE 1−α . Suppose country...

Suppose country A has the following Cobb-Douglas production function q = AKαE 1−α . Suppose country A receives large foreign direct investments in capital (FDI)

(a) How does an increase in FDI affect labor productivity in country A? How would wages respond in the short-run?

(b) In the long run, what are the implications of FDI on potential future immigration out of country A?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C =...
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C = 3L + 12K. (For some reason variable "w" is not provided) a. Optimize labor usage in the short run if the firm has 9 units of capital and the product price is $3. b. Show how you can calculate the short run average total cost for this level of labor usage? c. Determine “MP per dollar” for each input and explain what the comparative...
6.7 The production function Q=KaLb where 0≤ a, b≤1 is called a Cobb-Douglas production function. This...
6.7 The production function Q=KaLb where 0≤ a, b≤1 is called a Cobb-Douglas production function. This function is widely used in economic research. Using the function, show the following: a. The production function in Equation 6.7 is a special case of the Cobb-Douglas. b. If a+b=1, a doubling of K and L will double q. c. If a +b < 1, a doubling of K and L will less than double q. d. If a +b > 1, a doubling...
Given the Cobb-Douglas production function for Mabel’s factory Q = (L0.4) * (K0.7) a) Based on...
Given the Cobb-Douglas production function for Mabel’s factory Q = (L0.4) * (K0.7) a) Based on the function above, does Mabel’s factory experiencing economies or diseconomies of scale? Explain. b) If the manager wished to raise productivity by 50% and planned to increase capital by 25%, how much would she have to increase her labor to reach that desired production level?
Suppose that a firm has the Cobb-Douglas production function Q = 12K ^ (0.75) L^ (0.25)....
Suppose that a firm has the Cobb-Douglas production function Q = 12K ^ (0.75) L^ (0.25). Because this function exhibits (constant, decreasing, increasing) returns to scale, the long-run average cost curve is (upward-sloping, downward-sloping, horizontal), whereas the long-run total cost curve is upward-sloping, with (an increasing, a declining, a constant) slope. Now suppose that the firm’s production function is Q = KL. Because this function exhibits (constant, decreasing, increasing) returns to scale, the long-run average cost curve is (upward-sloping, downward-sloping,...
You are given this estimate of a Cobb-Douglas production function: Q = 10K0.6L0.8 A. Calculate the...
You are given this estimate of a Cobb-Douglas production function: Q = 10K0.6L0.8 A. Calculate the output elasticities of capital and labor. (Note: As shown on p. 300, for the Cobb-Douglas production function Q = 10KaLb the output elasticity of capital is EK = (%ΔQ/%ΔK) = a and the output elasticity of labor is EL = (%ΔQ/%ΔL) = b. B. Using what you found in Part (A), by how much will output increase if the firm increases capital by 10...
Cobb-Douglas Production Function & Cost of Production A firm’s production function is given as – q...
Cobb-Douglas Production Function & Cost of Production A firm’s production function is given as – q = 2K0.4N0.6 What kind of returns to scale does this production technology exhibit? Justify your answer. Find out the expression for the marginal product of labor. Find out the expression for the marginal product of capital. Find out the expression for MRTS.
2. Assume that a manufacturer faces a Cobb-Douglas production function, q=40K^0.5L^0.5 where q is output per...
2. Assume that a manufacturer faces a Cobb-Douglas production function, q=40K^0.5L^0.5 where q is output per period, L is labor, K is capital. The market price of labor (w) is $50 per unit and the price of capital (r) is $200 per unit. a. Specify and illustrate graphically the short-run MPl and APl for L = 5 to 30 units (assume that the level of capital is 25; use increments of 5 units of labor). Is this firm operating in...
(a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale....
(a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale. (b) Derive the marginal products of labor and capital. Show that you the MPL is decreasing on L and that the MPK is decreasing in K.
a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale....
a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale. (b) Derive the marginal products of labor and capital. Show that you the MPL is decreasing on L and that the MPK is decreasing in K.
Consider the Cobb-Douglas production function F (L, K) = (A)(L^α)(K^1/2) , where α > 0 and...
Consider the Cobb-Douglas production function F (L, K) = (A)(L^α)(K^1/2) , where α > 0 and A > 0. 1. The Cobb-Douglas function can be either increasing, decreasing or constant returns to scale depending on the values of the exponents on L and K. Prove your answers to the following three cases. (a) For what value(s) of α is F(L,K) decreasing returns to scale? (b) For what value(s) of α is F(L,K) increasing returns to scale? (c) For what value(s)...