Question

An individual has preferences for an aggregate consumption commodity (x) and health (H) represented by a...

An individual has preferences for an aggregate consumption commodity (x) and health (H) represented by a utility function U(x, H) = αln(x) + βln(H). The price of the aggregate commodity (x) is px and the price of medical care (m) is pm. The input of medical care (m) produces health (H) via a health production relationship that can be presented by the function g(m) = ln(m); that is H = ln(m).

a. Compute the optimal demand for medical care (m), the aggregate consumption commodity (x) and health (H) as functions of prices (px, pm), income (y), and the parameters of the model (α, β). You may assume a standard budget constraint.

b. Calculate the price elasticity of demand for medical care.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose the preferences of an individual are represented by a quasilinear utility func- tion: U (x,...
Suppose the preferences of an individual are represented by a quasilinear utility func- tion: U (x, y) = 3 ln(x) + 6y (a) Initially, px=1, py=2 and I=101. Then, the price of x increases to 2 (px=2). Cal- culate the changes in the demand for x. What can you say about the substitution and income effects of the change in px on the consumption of x? (Hint: since the change in price is not small, you cannot use the Slutsky...
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy....
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy. Find the optimal values of x and y as a function of the prices px and py with an income level m. px and py are the prices of good x and y respectively. 2. Consider a utility function that represents preferences: u(x,y) = min{80x,40y} Find the optimal values of x and y as a function of the prices px and py with an...
An agent has preferences for goods X and Y represented by the utility function U(X,Y) =...
An agent has preferences for goods X and Y represented by the utility function U(X,Y) = X +3Y the price of good X is Px= 20, the price of good Y is Py= 40, and her income isI = 400 Choose the quantities of X and Y which, for the given prices and income, maximize her utility.
A consumer has preferences represented by the utility function u(x, y) = x^(1/2)*y^(1/2). (This means that...
A consumer has preferences represented by the utility function u(x, y) = x^(1/2)*y^(1/2). (This means that MUx=(1/2)x^(−1/2)*y^(1/2) and MUy =1/2x^(1/2)*y^(−1/2) a. What is the marginal rate of substitution? b. Suppose that the price of good x is 2, and the price of good y is 1. The consumer’s income is 20. What is the optimal quantity of x and y the consumer will choose? c. Suppose the price of good x decreases to 1. The price of good y and...
(Intertemporal Choice )Consider a consumer whose preferences over consumption today and consumption tomorrow are represented by...
(Intertemporal Choice )Consider a consumer whose preferences over consumption today and consumption tomorrow are represented by the utility function U(c1,c2)=lnc1 +?lnc2, where c1 and c2 and consumption today and tomorrow, respectively, and ? is the discounting factor. The consumer earns income y1 in the first period, and y2 in the second period. The interest rate in this economy is r, and both borrowers and savers face the same interest rate. (a) (1 point) Write down the intertemporal budget constraint of...
George is making a consumption choice over apples (a) and bananas (b). George’s preferences are represented...
George is making a consumption choice over apples (a) and bananas (b). George’s preferences are represented by u (a, b) =(2a^2)b where a > 0 and b > 0. Denote by f = (a, b) a fruit bundle. 1. In terms of preference relations, how does George rank the three bundles f1 = (3, 1), f2 = (1, 3), and f3 = (2, 2) relative to each other? 2. State George’s marginal rate of substitution (MRS) function, MRS(a, b) (where...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2),...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2), where ct denotes the stream of consumption in period t and l, hours of leisure. He can choose to work only when he is young. If he works an hour, he can earn 10 dollars (he can work up to 100 hours). He can also use savings to smooth consumption over time, and if he saves, he will earn an interest rate of 10%...
Consider a consumer who has preferences over consumption (x) and leisure (L) represented by u(L, x)...
Consider a consumer who has preferences over consumption (x) and leisure (L) represented by u(L, x) = 10 ln L + 5 ln x. The consumer has 24 hours in the day (T = 24) to divide between work and leisure. The consumer can choose however many hours they want to work. For each hour of work they are paid a wage given by w = 10. Consumption (x) costs 1 per unit. (a) Initially suppose that the consumer has...
Emily's preferences can be represented by u(x,y)=x^1/4 y^3/4 . Emily faces prices (px,py) = (2,1) and...
Emily's preferences can be represented by u(x,y)=x^1/4 y^3/4 . Emily faces prices (px,py) = (2,1) and her income is $120. Her optimal consumption bundle is: __________ (write in the form of (x,y) with no space) Now the price of x increases to $3 while price of y remains the same Her new optimal consumption bundle is: ____________ (write in the form of (x,y) with no space) Her Equivalent Variation is: $ ____________
Consider an individual who has preferences over Hamburgers (H) and Soda (S) represented by the following...
Consider an individual who has preferences over Hamburgers (H) and Soda (S) represented by the following utility function: U(H,S)=H^0.9 + 3S. The price of a Hamburger is $4 and the price of a Soda is $3. The individual has a budget of B (you don’t know the exact amount). You are given the following marginal utilities: MUH=0.9H^ -0.1, MUS=3. A) Find the demand functions for this individual. B) Characterize what will happen over every feasible size of B (ie. zero...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT