Week | AVC ($) | Q_S1 |
1 | 20.52 | 616 |
2 | 20.54 | 612 |
3 | 20.54 | 582 |
4 | 20.55 | 549 |
5 | 20.54 | 618 |
6 | 20.51 | 681 |
7 | 20.50 | 644 |
8 | 20.58 | 630 |
9 | 20.54 | 546 |
10 | 20.60 | 526 |
11 | 20.50 | 684 |
12 | 20.49 | 660 |
13 | 20.52 | 644 |
14 | 20.56 | 616 |
15 | 20.53 | 629 |
16 | 20.55 | 634 |
17 | 20.54 | 686 |
18 | 20.50 | 709 |
19 | 20.52 | 632 |
20 | 20.54 | 568 |
21 | 20.52 | 584 |
22 | 20.51 | 612 |
23 | 20.54 | 600 |
24 | 20.52 | 575 |
25 | 20.54 | 562 |
26 | 20.51 | 592 |
27 | 20.63 | 457 |
28 | 20.55 | 508 |
29 | 20.56 | 487 |
30 | 20.58 | 467 |
31 | 20.62 | 446 |
32 | 20.59 | 478 |
33 | 20.56 | 500 |
34 | 20.57 | 490 |
35 | 20.54 | 565 |
36 | 20.54 | 556 |
37 | 20.51 | 610 |
38 | 20.52 | 623 |
39 | 20.51 | 615 |
40 | 20.52 | 670 |
41 | 20.54 | 671 |
42 | 20.49 | 707 |
43 | 20.48 | 779 |
44 | 20.50 | 731 |
45 | 20.53 | 733 |
46 | 20.49 | 763 |
47 | 20.50 | 722 |
48 | 20.47 | 739 |
49 | 20.49 | 747 |
50 | 20.48 | 766 |
51 | 20.50 | 696 |
52 | 20.48 | 722 |
Estimate the cost function for Average Variable Cost (AVC).
The cost function for AVC would be of the form AVC = a+b*quantity
By running linear regression in excel we get the results as below
SUMMARY OUTPUT |
|||||||
Regression Statistics |
|||||||
Multiple R |
0.8326 |
||||||
R Square |
0.6933 |
||||||
Adjusted R Square |
0.6872 |
||||||
Standard Error |
0.0198 |
||||||
Observations |
52 |
||||||
ANOVA |
|||||||
df |
SS |
MS |
F |
Significance F |
|||
Regression |
1 |
0.0442 |
0.0442 |
113.0227 |
0.0000 |
||
Residual |
50 |
0.0196 |
0.0004 |
||||
Total |
51 |
0.0638 |
|||||
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
||
Intercept |
20.7399 |
0.0199 |
1040.3159 |
0.0000 |
20.6999 |
20.7800 |
|
Q_S1 |
-0.0003 |
0.0000 |
-10.6312 |
0.0000 |
-0.0004 |
-0.0003 |
So, AVC = 20.74-0.0003*Quantity
Get Answers For Free
Most questions answered within 1 hours.