Question

2. Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and...

2. Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and people consume after saving a proportion of income, C=(1-s)Y. The capital per worker, k=K/N, evolves by (1+n)k’=szf(k)+(1-d)k.

(a) Describe the steady state k* as a function of other variables

(b) Suppose that there are two countries with the same steady state capital per worker k* and zero growth rate of population(n=0), but differ by saving rate, s and depreciation rate, d. So we assume that s1/d1=s2/d2 where s2>s1 and d2>d1. Compare two countries’ consumption per worker(C/N). Is it different? Why?

(c) Now we learn that that d=0.1, s=0.1, z=1, and n=0. Calculate the steady state k*. Suppose that the saving rate, s, is doubled into s=0.2. Find out the new steady state k**.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and people...
Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and people consume after saving a proportion of income, C=(1-s)Y. The capital per worker, k=K/N, evolves by (1+n)k’=szf(k)+(1-d)k. (a) Describe the steady state k* as a function of other variables. (b) Suppose that there are two countries with the same steady state capital per worker k* and zero growth rate of population(n=0), but differ by saving rate, s and depreciation rate, d. So we assume that...
Assume that an economy is described by the Solow growth model as below: Production Function: y=50K^0.4...
Assume that an economy is described by the Solow growth model as below: Production Function: y=50K^0.4 (LE)^0.6 Depreciation rate: S Population growth rate: n Technological growth rate:g Savings rate: s a. What is the per effective worker production function? b. Show that the per effective worker production function derived in part a above exhibits diminishing marginal returns in capital per effective worker C.Solve for the steady state output per effective worker as a function of s,n,g, and S d. A...
Assume that an economy described by the Solow model has the production function Y = K...
Assume that an economy described by the Solow model has the production function Y = K 0.4 ( L E ) 0.6, where all the variables are defined as in class. The saving rate is 30%, the capital depreciation rate is 3%, the population growth rate is 2%, and the rate of change in labor effectiveness (E) is 1%. For this country, what is f(k)? How did you define lower case k? Write down the equation of motion for k....
Solow Growth Model Question: Consider an economy where output (Y) is produced according to function Y=F(K,L)....
Solow Growth Model Question: Consider an economy where output (Y) is produced according to function Y=F(K,L). L is number of workers and Y is the capital stock. Production function F(K,L) has constant returns to scale and diminishing marginal returns to capital and labor individually. Economy works under assumption that technology is constant over time. The economy is in the steady-state capital per worker. Draw graph. Next scenario is that the rate of depreciation of capital increases due to climate change...
3- Growth Model Suppose that the output (Y) in the economy is given by the following...
3- Growth Model Suppose that the output (Y) in the economy is given by the following aggregate production function. Yt = Kt +Nt where the Kt is capital and Nt is population. Furthermore assume that the capital depreciate at the rate of ẟ and That saving constant and proportion s of income you may assume that ẟ>s 1-suppose that the population remains constant . solve for the steady state level of capital per worker 2- now suppose that the population...
In the Solow growth model with population growth but no technological progress, if in the steady...
In the Solow growth model with population growth but no technological progress, if in the steady state the marginal product of capital equals 0.10, the depreciation rate equals 0.05, and the rate of population growth equals 0.03, then the capital per worker ratio ____ the Golden Rule level. A) is above B) is below C) is equal to D) will move to
Assume that the production function in an economy is given by y=k1/2, where y and k...
Assume that the production function in an economy is given by y=k1/2, where y and k are the per-worker levels of output and capital, respectively. The savings rate is given by s=0.2 and the rate of depreciation is 0.05. What is the optimal savings rate to achieve the golden-rule steady state level of k?
Suppose that output (Y ) in an economy is given by the following aggregate production function:...
Suppose that output (Y ) in an economy is given by the following aggregate production function: Yt = Kt + Nt where Kt is capital and Nt is the population. Furthermore, assume that capital depreciates at rate δ and that savings is a constant proportion s of income. You may assume that δ > s. Suppose that the population remains constant. Solve for the steady-state level of capital per worker. Now suppose that the population grows at rate n. Solve...
4. Golden Rule. Suppose that we have a standard Solow Model. There is no population or...
4. Golden Rule. Suppose that we have a standard Solow Model. There is no population or technology growth. (a) The rm problem is to maximize prots, t. The rm's problem can be written as: max KtC0;NtC0 t = AK t N1− t − wtNt − rtKt: The rm takes the factor prices as given. Find the rst order conditions characterizing the optimal rm behavior. (b) Use the FONCs from 4a to show that wtNt~Yt = 1 − , where Yt...
Consider the following Cobb-Douglass production function?≡??(?,?):?=??1/3?2/3 where Y is output, the constant z measures productivity, K...
Consider the following Cobb-Douglass production function?≡??(?,?):?=??1/3?2/3 where Y is output, the constant z measures productivity, K is physical capital, and N is labor. Suppose ?=2, ?=0.16, ?=0.06, and ?=0.02. a. What are the steady-state (numerical) values of ?, ?, and ?? b. What is the golden-rule (numerical) level of capital per worker? c. If the government wants to achieve the golden rule level of k, should savings increase, decrease or remain unchanged? Solve for/obtain its (numerical) value. Explain briefly.