Question

Andrew’s utility function is U(x1, x2) = 4x21 + x2. Andrew’s income is $32, the price...

Andrew’s utility function is U(x1, x2) = 4x21 + x2. Andrew’s income is $32, the price of good 1 is $16 per unit, and the price of good 2 is $1 per unit. What happens if Andrew’s income increases to $80 and prices do not change? (Hint: Does he have convex preferences?) *show work***

1. He will consume 48 more units of good 2 and the same number of units of good 1 as before.  

2. He will increase his consumption of both goods.

3. He will reduce his consumption of good 2.

4. He will consume the same number of units of good 2 and 3 more units of good 1 as before.

5. None of the above.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Modou has a utility function U(X1,X2) = 2X1 + X2 The prices of X1 & X2...
Modou has a utility function U(X1,X2) = 2X1 + X2 The prices of X1 & X2 are $1 each and Modou has an income of $20 budgeted for this two goods. Draw the demand curve for X1 as a function of p1. At a price of p1 = $1, how much X1 and X2 does Modou consume? A per unit tax of $0.60 is placed on X1. How much of good X1 will he consume now? Suppose the government decides...
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption...
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption of good 1 and x2 is her consumption of good 2. The price of good 1 is p1, the price of good 2 is p2, and her income is M. Setting the marginal rate of substitution equal to the price ratio yields this equation: p1/p2 = (1+x2)/(A+x1) where A is a number. What is A? Suppose p1 = 11, p2 = 3 and M...
Imran consumes two goods, X1 and X2. his utility function takes the form: u(X1, X2)= 4(X1)^3+3(X2)^5....
Imran consumes two goods, X1 and X2. his utility function takes the form: u(X1, X2)= 4(X1)^3+3(X2)^5. The price of X1 is Rs. 2 and the price of X2 is Rs. 4. Imran has allocated Rs. 1000 for the consumption of these two goods. (a) Fine the optimal bundle of these two goods that Imran would consume if he wants to maximize his utility. Note: write bundles in integers instead of decimals. (b) What is Imran's expenditure on X1? On X2?...
Consider the following utility function: U(x1,x2) X11/3 X2 Suppose a consumer with the above utility function...
Consider the following utility function: U(x1,x2) X11/3 X2 Suppose a consumer with the above utility function faces prices p1 = 2 and p2 = 3 and he has an income m = 12. What’s his optimal bundle to consume?
Consider a consumer who consumes two goods and has utility function u(x1,x2)=x2 +√x1. The price of...
Consider a consumer who consumes two goods and has utility function u(x1,x2)=x2 +√x1. The price of good 2 is 1, the price of good 1 is p, and income is m. (1) Show that a) both goods are normal, b) good 1 is an ordinary good, c) good 2 is a gross substitute for good 1.
Consider a two good economy. A consumer has a utility function u(x1, x2) = exp (x1x2)....
Consider a two good economy. A consumer has a utility function u(x1, x2) = exp (x1x2). Let p = p1 and x = x1. (1) Compute the consumer's individual demand function of good 1 d(p). (2) Compute the price elasticity of d(p). Compute the income elasticity of d(p). Is good 1 an inferior good, a normal good or neither? Explain. (3) Suppose that we do not know the consumer's utility function but we know that the income elasticity of his...
1. Al Einstein has a utility function that we can describe by u(x1, x2) = x21...
1. Al Einstein has a utility function that we can describe by u(x1, x2) = x21 + 2x1x2 + x22 . Al’s wife, El Einstein, has a utility function v(x1, x2) = x2 + x1. (a) Calculate Al’s marginal rate of substitution between x1 and x2. (b) What is El’s marginal rate of substitution between x1 and x2? (c) Do Al’s and El’s utility functions u(x1, x2) and v(x1, x2) represent the same preferences? (d) Is El’s utility function a...
Determine the optimal quantities of both x1 and x2 for each utility function. The price of...
Determine the optimal quantities of both x1 and x2 for each utility function. The price of good 1 (p1) is $2. The price of good 2 (p2) is $1. Income (m) is $10. a.) U(x1,x2) = min{2x1, 7x2} b.) U(x1,x2) = 9x1+4x2 c.) U(x1,x2) = 2x11/2 x21/3 Please show all your work.
A consumer has the Cobb-Douglas utility function u(x1,x2)=x3.51x42u(x_1, x_2) = x_1^{3.5}x_2^{4} The price of good 1...
A consumer has the Cobb-Douglas utility function u(x1,x2)=x3.51x42u(x_1, x_2) = x_1^{3.5}x_2^{4} The price of good 1 is 1.5 and the price of good 2 is 3. The consumer has an income of 11. What amount of good 2 will the consumer choose to consume?
3. Suppose that a consumer has a utility function u(x1, x2) = x1 + x2. Initially...
3. Suppose that a consumer has a utility function u(x1, x2) = x1 + x2. Initially the consumer faces prices (1, 2) and has income 10. If the prices change to (4, 2), calculate the compensating and equivalent variations. [Hint: find their initial optimal consumption of the two goods, and then after the price increase. Then show this graphically.] please do step by step and show the graph