Question

A consumer has utility for protein bars and vitamin water summarized by the Cobb-Douglas utility function...

A consumer has utility for protein bars and vitamin water summarized by the Cobb-Douglas utility function U(qB,qW) = qBqW.

e. Find the consumer’s Engel curve for vitamin water when PB = PW = 1.

f. What is the consumer’s optimal bundle when M = 100 and PB = PW = 1?

Suppose the price of protein bars increases to P’B = 2.

g. Find the new optimal bundle.

h. Find the substitution effect of the price increase on purchases of protein bars using the Slutsky method.

i. Find the substitution effect of the price increase on purchases of protein bars using the Hicks method.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A consumer has utility for protein bars and vitamin water summarized by the Cobb-Douglas utility function...
A consumer has utility for protein bars and vitamin water summarized by the Cobb-Douglas utility function U(qB,qW) = qBqW. a. Show that the consumer’s MRS at a generic bundle (qB,qW) is MRS = - MUB/MUW = - qW/qB. b. Show that the consumer’s MRS would equally be - qW/qB. if the consumer’s utility function was V(qB,qW) = qB0.5qW0.5. c. Find the consumer’s Marshallian demand for protein bars when M = 100 and Pw = 1. d. Is the demand function...
3. Suppose that a consumer has a utility function given by U(X,Y) = X^.5Y^.5 . Consider...
3. Suppose that a consumer has a utility function given by U(X,Y) = X^.5Y^.5 . Consider the following bundles of goods: A = (9, 4), B = (16, 16), C = (1, 36). a. Calculate the consumer’s utility level for each bundle of goods. b. Specify the preference ordering for the bundles using the “strictly preferred to” symbol and the “indifferent to” symbol. c. Now, take the natural log of the utility function. Calculate the new utility level provided by...
Consider a consumer with Cobb-Douglas preferences over two goods, x and y described by the utility...
Consider a consumer with Cobb-Douglas preferences over two goods, x and y described by the utility function u(x, y) = 1/3ln(x) + 2/3n(y) 1. Assume the prices of the two goods are initially both $10, and her income is $1000. Obtain the consumer’s demands for x and y. 2. If the price of good x increases to $20, what is the impact on her demand for good x? 3. Decompose this change into the substitution effect, and the income effect....
Utility cobb douglas function = 2X.5Y2 MUx =Y2/X.5 MUy =4X.5Y Px=1 PY=2 and M=100 1.Graph the...
Utility cobb douglas function = 2X.5Y2 MUx =Y2/X.5 MUy =4X.5Y Px=1 PY=2 and M=100 1.Graph the consumer optimization problem in(X,Y) space. Clealy label the precise location of the optimal bundle, the budget constraintm, and the shape of the furthest obtainable indifference curve. 2.Assume Px increase to 2. What is the total effect of the price change in terms of X and Y. 3. What is the precise location of the bundle used to decompose the substitution and income effect? 4.What...
Consider the Cobb-Douglas utility function u(x1,x2)=x1^(a)x2^(1-a). a. Find the Hicksian demand correspondence h(p, u) and the...
Consider the Cobb-Douglas utility function u(x1,x2)=x1^(a)x2^(1-a). a. Find the Hicksian demand correspondence h(p, u) and the expenditure function e(p,u) using the optimality conditions for the EMP. b. Derive the indirect utility function from the expenditure function using the relationship e(p,v(p,w)) =w. c. Derive the Walrasian demand correspondence from the Hicksian demand correspondence and the indirect utility function using the relationship x(p,w)=h(p,v(p,w)). d. vertify roy's identity. e. find the substitution matrix and the slutsky matrix, and vertify the slutsky equation. f....
1. A consumer has the utility function U = min(2X, 5Y ). The budget constraint isPXX+PYY...
1. A consumer has the utility function U = min(2X, 5Y ). The budget constraint isPXX+PYY =I. (a) Given the consumer’s utility function, how does the consumer view these two goods? In other words, are they perfect substitutes, perfect complements, or are somewhat substitutable? (2 points) (b) Solve for the consumer’s demand functions, X∗ and Y ∗. (5 points) (c) Assume PX = 3, PY = 2, and I = 200. What is the consumer’s optimal bundle? (2 points) 2....
Julie has preferences for food, f, and clothing, c, described by a Cobb-Douglas utility function u(f,...
Julie has preferences for food, f, and clothing, c, described by a Cobb-Douglas utility function u(f, c) = f · c. Her marginal utilities are MUf = c and MUc = f. Suppose that food costs $1 a unit and that clothing costs $2 a unit. Julie has $12 to spend on food and clothing. a. Sketch Julie’s indifference curves corresponding to utility levels U¯ = 12, U¯ = 18, and U¯ = 24. Using the graph (no algebra yet!),...
Homer is a deeply committed lover of chocolate. Assume his preferences are Cobb-Douglas over chocolate bars...
Homer is a deeply committed lover of chocolate. Assume his preferences are Cobb-Douglas over chocolate bars (denoted by C on the x-axis) and a numeraire good (note: we use the notion of a numeraire good to represent spending on all other consumption goods – in this example, that means everything other than chocolate bars – its price is always $1). a. Homer earns a salary that provides him a monthly income of $360. Last month, when the price of a...
A consumer has the Cobb-Douglas utility function u(x1,x2)=x3.51x42u(x_1, x_2) = x_1^{3.5}x_2^{4} The price of good 1...
A consumer has the Cobb-Douglas utility function u(x1,x2)=x3.51x42u(x_1, x_2) = x_1^{3.5}x_2^{4} The price of good 1 is 1.5 and the price of good 2 is 3. The consumer has an income of 11. What amount of good 2 will the consumer choose to consume?
A consumer has a demand function for good 2, ?2, that depends on the price of...
A consumer has a demand function for good 2, ?2, that depends on the price of good 1, ?1, the price of good 2, ?2, and income, ?, given by ?2 = 2 + 240/(??2) + 2?1. Initially, assume ? =40, ?2 = 1, and ?1 = 2. Then the price of good 2 increases to ?2′ = 3. a) What is the total change in demand for good 2? b) Calculate the amount of good 1 consumed at the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT