Question

A consumer’s consumption-utility function for a two-period horizon (t = 1, 2) is given by U(c1,c2)...

A consumer’s consumption-utility function for a two-period horizon (t = 1, 2) is given by U(c1,c2) = ln(c1)+ln(c2). The consumer’s income stream is y1 = $1500 and y2 = $1080, and the market rate of interest is 8%. Calculate the optimal values for c1 and c2 that maximize the consumer’s utility

Homework Answers

Answer #1

Lets first form intertemporal budget constraint.

Period 1 :

c1 + s = y1 where s = saving in period 1

=> s = y1 - c1

Period 2 :

c2 = s + rs + y2 where r = interest rate = 8% = 0.08

=> c2 = (1 +r)(y1 - c1) + y2

=> c2 + 1.08c1 = 1080 + 1500*1.08 = 2700

Thus we have to maximize : U = ln(c1) + ln(c2)

Subject to : c2 + 1.08c1 = 2700 ------------(1)

Legrange is given by :

ln(c1) + ln(c2) + u(2700 - c2 - 1.08c1) where u = Legrange multiplier

First order condition :

Dividing (2) from (3) we get :

c2/c1 = 1.08 => c2 = 1.08c1

Putting this in (1) we get :

c2 + 1.08c1 = 2700 => 1.08c1 + 1.08c1 = 2700

=> c1 = 1250 => c2 = 1.08c1 = 1.08*1250 = 1350

Hence, the optimal values are : c1 = 1250 and c2 = 1350.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that Jessica has the following utility, U = C1^1/2 C2^1/2 and that she earns $400...
Suppose that Jessica has the following utility, U = C1^1/2 C2^1/2 and that she earns $400 in the first period and $700 in the second period. Her budget constraint is given by C1 + C2/1+r = Y1 + Y2/1+r . The interest rate is 0.25 (i.e., 25%). She wants to maximize her utility. (a) What are her optimal values of C1 and C2? (b) Is Jessica a borrower or a saver in period 1? (c) Suppose the real interest rate...
Consider the following 2-period model U(C1,C2) = min{4C1,5C2} C1 + S = Y1 – T1 C2...
Consider the following 2-period model U(C1,C2) = min{4C1,5C2} C1 + S = Y1 – T1 C2 = Y2 – T2 + (1+r)S Where C1 : first period consumption C2 : second period consumption S : first period saving Y1 = 20 : first period income T1 = 5 : first period lump-sum tax Y2 = 50 : second period income T2 = 10 : second period lump-sum tax r = 0.05 : real interest rate Find the optimal saving, S*
Vanessa’s utility function is U(c1, c2) = c1/21 + 0.83c1/22, where c1 is her consumption in...
Vanessa’s utility function is U(c1, c2) = c1/21 + 0.83c1/22, where c1 is her consumption in period 1 and c2 is her consumption in period 2. In period 2, her income is 4 times as large as her income in period 1. At what interest rate will she choose to consume the same amount in period 2 as in period 1? (Choose the closest answer.)
Suppose the following model of government efficiency. Utility function over consumption of private goods (C) and...
Suppose the following model of government efficiency. Utility function over consumption of private goods (C) and public goods (G) U(C,L) = C^0.5G^0.5 Exogenous Income: Y = 50 Lump-sum tax: T Budget constraint: C + T = Y PPF: C = Y – G/q Government efficiency: q = 0.8 (This measures the number of public goods that can be produced from one unit of private consumption good) We want to maximize the representative consumer’s utility and balance the government budget. Find...
utility function over consumption today (c1) and consumption tomorrow (c2): U(c1, c2) = log(c1) + blog(c2)...
utility function over consumption today (c1) and consumption tomorrow (c2): U(c1, c2) = log(c1) + blog(c2) where 0 < b < 1 and log denotes the natural logarithm Let p1 denote the price of c1 and p2 denote the price of c2. Assume that income is Y. Derive Marshallian demand functions for consumption today (c1) and consumption tomorrow (c2). What happens to c1 and c2 as b approaches 0? {Math hint: if y = log(x), dy/dx = 1/x}
Hira has the utility function U(c1; c2) = c11/2 +2c21/2 where c1 is her consumption in...
Hira has the utility function U(c1; c2) = c11/2 +2c21/2 where c1 is her consumption in period 1 and c2 is her consumption in period 2. She will earn 100 units in period 1 and 100 units in period 2. She can borrow or lend at an interest rate of 10%. Write an equation that describes Hira’s budget. What is the MRS for the utility function between c1 and c2? Now assume that she can save at the interest rate...
Imagine an individual who lives for two periods. The individual has a given pattern of endowment...
Imagine an individual who lives for two periods. The individual has a given pattern of endowment income (y1 and y2) and faces the positive real interest rate, r. Lifetime utility is given by U(c1, c2)= ln(c1)+β ln(c2) Suppose that the individual faces a proportional consumption tax at the rate Ԏc in each period. (If the individual consumes X in period i then he must pay XԎc to the government in taxes period). Derive the individual's budget constraint and the F.O.C...
(15) Smith receives $100 of income this period and $165 next period. His utility function is...
(15) Smith receives $100 of income this period and $165 next period. His utility function is given by U=Xα Y1-α, where X is consumption this period and Y is consumption next period. When the interest rate was 10%, his consumption was (C1*, C2*)=(100, 165). 7) Find the value of α. (8) If the interest rises to 50%, what would be the optimal consumption bundle?
(Intertemporal Choice )Consider a consumer whose preferences over consumption today and consumption tomorrow are represented by...
(Intertemporal Choice )Consider a consumer whose preferences over consumption today and consumption tomorrow are represented by the utility function U(c1,c2)=lnc1 +?lnc2, where c1 and c2 and consumption today and tomorrow, respectively, and ? is the discounting factor. The consumer earns income y1 in the first period, and y2 in the second period. The interest rate in this economy is r, and both borrowers and savers face the same interest rate. (a) (1 point) Write down the intertemporal budget constraint of...
A consumer likes two goods; good 1 and good 2. the consumer’s preferences are described the...
A consumer likes two goods; good 1 and good 2. the consumer’s preferences are described the by the cobb-douglass utility function U = (c1,c2) = c1α,c21-α Where c1 denotes consumption of good 1, c2 denotes consumption of good 2, and parameter α lies between zero and one; 1>α>0. Let I denote consumer’s income, let p1 denotes the price of good 1, and p2 denotes the price of good 2. Then the consumer can be viewed as choosing c1 and c2...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT