Question

Using the budget constraint, PC=W[T-l], where C is consumption and l is leisure and T is...

Using the budget constraint, PC=W[T-l], where C is consumption and l is leisure and T is total time, show that a cultural constraint or government requirement to work 8 hours per day will tend to make total satisfaction in society lower than it could be if there is no restriction on the number of hours a worker chooses to work.

Homework Answers

Answer #1

T = working hour + leisure (L)

Working hour = T - L

Budget constraint C = w(T -L) ; where w = wage rate

Total satisfaction after fixing the working hour at 8 hours will reduce if the willingness to work of the workers were free to choose their working hours at the given wage rate. They definitely optimise their utility by choosing less work and more leisure as this have no effect on their wage before regulations.

In the figure, the vertical straight line represents 8 hours of work and L2T is the hours of leisure consumed. Initially, IC1 represents the utility level of the workers. However, government fixed 8 hours of work, the working hours of the workers has incraesed and leisure time has been reduced. Therefore, the consumer with the given budget constraint is now on the lower IC, IC2.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100...
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100 hours to divide between work and leisure per week wage is $20/hr 1. Write down budget constraint in terms of consumption and hours of work 2.Tom make decisions on hours of work, leisure and consumption to max. utility. Explain why we can collapse this problem to one in which he chooses hours of leisure only 3. Find optimal hours of work and total consumption...
3. Suppose that an individual’s utility function for consumption, C, and leisure, L, is given by...
3. Suppose that an individual’s utility function for consumption, C, and leisure, L, is given by U(C, L) = C 0.5L 0.5 This person is constrained by two equations: (1) an income constraint that shows how consumption can be financed, C = wH + V, where H is hours of work and V is nonlabor income; and (2) a total time constraint (T = 1) L + H = 1 Assume V = 0, then the expenditure-minimization problem is minimize...
Suppose u=u(C,L)=4/5 ln⁡(C)+1/5 ln⁡(L), where C = consumption goods, L = the number of days taken...
Suppose u=u(C,L)=4/5 ln⁡(C)+1/5 ln⁡(L), where C = consumption goods, L = the number of days taken for leisure such that L=365-N, where N = the number of days worked at the nominal daily wage rate of $W. The government collects tax on wage income at the marginal rate of t%. The nominal price of consumption goods is $P. Further assume that the consumer-worker is endowed with $a of cash gift. a) Write down the consumer-worker's budget constraint. b) Write down...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c, l) = c 2/3 l 1/3 . Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c,l) = c2/3l1/3. Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1 and the price of leisure...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2),...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2), where ct denotes the stream of consumption in period t and l, hours of leisure. He can choose to work only when he is young. If he works an hour, he can earn 10 dollars (he can work up to 100 hours). He can also use savings to smooth consumption over time, and if he saves, he will earn an interest rate of 10%...
Consider the following labour-leisure choice model. U(C,L) = C^(2/3)L^(1/3) C = wN + π – T...
Consider the following labour-leisure choice model. U(C,L) = C^(2/3)L^(1/3) C = wN + π – T H= N+ L Where C: consumption L: leisure N: hours worked H = 50 : total hours w = 4 : hourly wage π = 20 : non-labor income T = 10 : lump-sum tax Suppose the hourly wage changes to w = 5. Perform a decomposition and calculate the substitution, income and total effect for each C, L, N
In the labor-leisure model, the representative consumer receives satisfaction from consumption of goods (C) and from...
In the labor-leisure model, the representative consumer receives satisfaction from consumption of goods (C) and from the consumption of Leisure (L). Let C be the composite good with price $1 and L determines the number of hours of leisure this person consumes. Therefore U = f(C,L) for this consumer. This consumer’s consumption is constrained by time and income. Let her non-labor income, V, be $1200 per week, let the hourly wage rate be $8 and h be the number of...
2. An individual utility function is given by U(c,h) = c·h, where c represents consumption during...
2. An individual utility function is given by U(c,h) = c·h, where c represents consumption during a typical day and h hours of leisure enjoyed during that day. Let l be the hours of work during a day, then l + h = 24. The real hourly market wage rate the individual can earn is w = $20. This individual receives daily government transfer benefits equal to n = $100. For the graphical analysis of this individual’s utility maximization problem,...
Each day, Luke must decide his leisure hours, L, and his consumption, C. His utility function...
Each day, Luke must decide his leisure hours, L, and his consumption, C. His utility function is given by the following equation ?(?, ?) = (? − 30)(? − 12). Luke receives $50 welfare payment per day. Show all the steps, with the definition of every new notation used in the steps. a) Suppose that Luke’s hourly wage is $5. Find Luke’s daily budget constraint equation and graph it. (5 pts.) b) If Luke’s wage is $5 per hour worked,...