Question

1. Consider the bivariate model: Yi = β0+β1Xi+ui . Explain what it means for the OLS...

1. Consider the bivariate model: Yi = β0+β1Xi+ui . Explain what it means for the OLS estimator, βˆ 1, to be consistent. (You may want to draw a picture.)

2. (Circle all that applies) Which of the following regression functions is/are linear in the parameters a) Yi = β1 + β2 1 Xi b) Yi = β1 + β 3 2Xi c) Yi = β1 + β2Xi

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and...
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and get the following results: b0=-3.13437; SE(b0)=0.959254; b1=1.46693; SE(b1)=21.0213; R-squared=0.130357; and SER=8.769363. Note that b0 and b1 the OLS estimate of b0 and b1, respectively. The total number of observations is 2950.According to these results the relationship between C and Y is: A. no relationship B. impossible to tell C. positive D. negative 2. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this...
What happens to the OLS estimators of β2 in the model yi=β1+β2xi+ui when ui and uj...
What happens to the OLS estimators of β2 in the model yi=β1+β2xi+ui when ui and uj are not independent? a. b2is biased and its t-statistic needs an adjustment. b. b2is biased. but its t-statistic is correct. c. b2is unbiased. but its t-statistic needs an adjustment. d. b2 is unbiased and its t-statistic is correct. Please Explained
Consider the model ln(Yi)=β0+β1Xi+β2Ei+β3XiEi+ui, where Y is an individual's annual earnings in dollars, X is years...
Consider the model ln(Yi)=β0+β1Xi+β2Ei+β3XiEi+ui, where Y is an individual's annual earnings in dollars, X is years of work experience, and E is years of education. Consider an individual with a high-school degree (E=12yrs) who has been working for 20 years. The expected increase in log earnings next year (when X=21yrs) compared to this year is, dropping units, β1 β1+12β3 β1+β3 β0+21β1+12β2+252β3
7) Consider the following regression model Yi = β0 + β1X1i + β2X2i + β3X3i + ...
7) Consider the following regression model Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + β5X5i + ui This model has been estimated by OLS. The Gretl output is below. Model 1: OLS, using observations 1-52 coefficient std. error t-ratio p-value const -0.5186 0.8624 -0.6013 0.5506 X1 0.1497 0.4125 0.3630 0.7182 X2 -0.2710 0.1714 -1.5808 0.1208 X3 0.1809 0.6028 0.3001 0.7654 X4 0.4574 0.2729 1.6757 0.1006 X5 2.4438 0.1781 13.7200 0.0000 Mean dependent var 1.3617 S.D. dependent...
1. Consider the following linear regression model which estimates only a constant: Yi = β1 +...
1. Consider the following linear regression model which estimates only a constant: Yi = β1 + ui What will the value of ˆβ1 be? Remember we are minimizing the sum of the squared residuals. 2. Consider the following regression model with K parameters: Yi = β1 + β2X2i + β3X3i + ... + βKXKi + ui Now consider the F-test of the null hypothesis that all slope parameters (β2,β3,...,βK) are equal to zero. Using the equation from class: F =((RSSk...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ui, i = 1,...,n . Transform the regression to allow you to easily test the null hypothesis that β1 + β3 = 1. State the new null hypothesis associated to this transformed regression.
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ui, i = 1, ..., n (∗) Transform the regression to allow you to easily test the null hypothesis that β1 + β3 = 1. State the new null hypothesis associated to this transformed regression. Would you expect to reject or accept the null hypothesis? Why?
Consider the simple regression model yi = β0 + β1xi + ei,i = 1,...,n. The Gauss-Markov...
Consider the simple regression model yi = β0 + β1xi + ei,i = 1,...,n. The Gauss-Markov conditions hold and also ei ∼ N(0,σ). Suppose we center both the response variable and the predictor. Estimate the intercept and the slope of this model.
1. The Central Limit Theorem A. States that the OLS estimator is BLUE B. states that...
1. The Central Limit Theorem A. States that the OLS estimator is BLUE B. states that the mean of the sampling distribution of the mean is equal to the population mean C. none of these D. states that the mean of the sampling distribution of the mean is equal to the population standard deviation divided by the square root of the sample size 2. Consider the regression equation Ci= β0+β1 Yi+ ui where C is consumption and Y is disposable...
The regression model Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + ui...
The regression model Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + ui has been estimated using Gretl. The output is below. Model 1: OLS, using observations 1-50 coefficient std. error t-ratio p-value const -0.6789 0.9808 -0.6921 0.4924 X1 0.8482 0.1972 4.3005 0.0001 X2 1.8291 0.4608 3.9696 0.0003 X3 -0.1283 0.7869 -0.1630 0.8712 X4 0.4590 0.5500 0.8345 0.4084 Mean dependent var 4.2211 S.D. dependent var 2.3778 Sum squared resid 152.79 S.E. of regression 1.8426 R-squared 0 Adjusted...