Question

True or False: Please specify your reasons. (i) If an independent variable in a multiple linear...

True or False: Please specify your reasons.

(i) If an independent variable in a multiple linear regression model is an exact linear combination of other independent variables, we can still calculate the least square estimators of the intercept.

(ii) For the multiple linear regression y = β0 + β1x + β2x 2 + u, β1 can be interpreted as the effect of one unit increase in x on y.

(iii) In the multiple linear regression with an intercept, (the sum of the residuals equals zero) may not hold as in the simple regression.

(iv) When adding an irrelavent regressor, R2 will decrease

Homework Answers

Answer #1

(i) False. If there is an exact linear combination between independent variables then regression model will suffer from perfect multicollinearity and it becomes impossible to calculate the OLS estimators.

(ii)False.β1 can be interpreted as the effect of one unit increase in X1 on Y,keeping other factors constant.

(iii) False. Sum of residuals is always zero in the case of multiple regression model with an intercept.

(iv)False.R2 always increases with an addition of new variables no matter whether its relevant or irrelevant.

If you have any doubt,feel free to ask.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Consider regression through the origin, y=β1x1+β2x2+u, which of the following statements is wrong? a. The...
1. Consider regression through the origin, y=β1x1+β2x2+u, which of the following statements is wrong? a. The degree of freedom for estimating the variance of error term is n−2. b. The sum of residuals equals to 0. c. If the true intercept parameter doesn’t equal to 0, all slope estimators are biased. d. The residual is uncorrelated with the independent variable. 2. Which of the following statements is true of hypothesis testing? a. OLS estimates maximize the sum of squared residuals....
You want to construct a multiple linear regression model. The dependent variable is Y and independent...
You want to construct a multiple linear regression model. The dependent variable is Y and independent variables are x1 and x2. The samples and STATA outputs are provided: Y X1 X2 3 2 1 4 1 2 6 3 3 6 3 4 7 4 5 STATA Y Coef. Std. Err. t P> abs. value (t) 95% confidence interval X1 0.25 0.4677072 0.53 0.646 -1.762382 , 2.262382 X2 0.85 0.3372684 2.52 0.128 -.601149 , 2.301149 _cons 2 0.7245688 2.76 0.110...
You want to construct a multiple linear regression model. The dependent variable is Y and independent...
You want to construct a multiple linear regression model. The dependent variable is Y and independent variables are x1 and x2. The samples and STATA outputs are provided: Y X1 X2 3 2 1 4 1 2 6 3 3 6 3 4 7 4 5 STATA Y Coef. Std. Err. t P> abs. value (t) 95% confidence interval X1 0.25 0.4677072 0.53 0.646 -1.762382 , 2.262382 X2 0.85 0.3372684 2.52 0.128 -.601149 , 2.301149 _cons 2 0.7245688 2.76 0.110...
Multiple linear regression results: Dependent Variable: Cost Independent Variable(s): Summated Rating Cost = -43.111788 + 1.468875...
Multiple linear regression results: Dependent Variable: Cost Independent Variable(s): Summated Rating Cost = -43.111788 + 1.468875 Summated Rating Parameter estimates: Parameter Estimate Std. Err. Alternative DF T-Stat P-value Intercept -43.111788 10.56402 ≠ 0 98 -4.0810021 <0.0001 Summated Rating 1.468875 0.17012937 ≠ 0 98 8.633871 <0.0001 Analysis of variance table for multiple regression model: Source DF SS MS F-stat P-value Model 1 8126.7714 8126.7714 74.543729 <0.0001 Error 98 10683.979 109.02019 Total 99 18810.75 Summary of fit: Root MSE: 10.441273 R-squared: 0.432...