Question

The market demand is given by P = 90 − 2Q. There are only two firms...

The market demand is given by P = 90 − 2Q. There are only two firms producing this good. Hence the quantity supplied in the market is the sum of each firm’s quantity supplied (that is, Q = qA + qB), where qj is the firm j 0 s quantity supplied). Firm A has zero marginal cost, while Firm B has the marginal cost of $30. Each firm has no fixed cost, and simultaneously chooses how many units to produce.

(a) What is Firm A’s profit function if Firm A takes the quantity chosen by Firm B, qB, as given?

(b) Find the equilibrium quantities produced by each Firm (QA*,QB* ).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a homogenous good market two firms, A and B, are producing with the same technology....
In a homogenous good market two firms, A and B, are producing with the same technology. Firm i’ s total cost function is C(qi) = 10 + 20qi, where i= A,B. The inverse demand function for the good is given by P(qA+qB) = 150 – (qA+qB). a) Assume that the firms choose simultaneously their quantities. Find the market price and determine firm’s profits and consumer surplus at that price. b) If the two firms set simultaneously their prices, instead of...
Consider a market with demand p = a − bq. There are two firms. Both firms...
Consider a market with demand p = a − bq. There are two firms. Both firms produce the same homogeneous product but have different technologies. Firm A has a cost function cA(qA) = cA × qA and firm B has a cost function cB(qB) = cB × qB. If necessary, assume that cA < cB. (a) Find the equilibrium quantities produced by each firm, the total equilibrium quantity, and the equilibrium price as a function of a, b, cA, and...
Two firms, A and B, are Cournot competitors facing the inverse market demand P = 5...
Two firms, A and B, are Cournot competitors facing the inverse market demand P = 5 - 0.001Q, where Q = qA + qB. Each firm has the same total cost function Ci = 2qi , i = A, B. a. (8) Write out the profit function of firm A, then derive the best response functions for A and B. (You only need to derive one best response function because A and B are identical.) Carefully graph the best response...
Consider a market in which the demand function is P=50-2Q, where Q is total demand and...
Consider a market in which the demand function is P=50-2Q, where Q is total demand and P is the price. In the market, there are two firms whose cost function is TCi=10qi+qi^2+25, where qi1 is the quantity produced by firm i and Q=q1+q2 Compute the marginal cost and the average cost. Compute the equilibrium (quantities, price, and profits) assuming that the firms choose simultaneously the output.
Q1. A monopolist has the following demand function and marginal cost function P = 120 –...
Q1. A monopolist has the following demand function and marginal cost function P = 120 – Q and MC = 30 + Q. i. Derive the monopolist’s marginal revenue function. ii. Calculate the output the monopolist should produce to maximize its profit. ii. (continuation) iii. What price does the monopolist charge to maximize its profit? Now assume that the monopolist above split into two large firms (Firm A and Firm B) with the same marginal cost as the monopolist. Let...
1. The market for laser printer has a demand curve given by P=1400-2Q, where P is...
1. The market for laser printer has a demand curve given by P=1400-2Q, where P is industry price and Q is industry quantity. Currently HP and EPSON are the only two firms in this market. Each firm has a constant marginal cost of production equal to 200 and there are no fixed costs. i). Assume that the two firms collude where each produces half of the total output. What is the equilibrium market price, each firm’s equilibrium quantity, and the...
Consider a market with only two firms. Demand on this market is given by D(p)= 90...
Consider a market with only two firms. Demand on this market is given by D(p)= 90 - 3p. Initially both firms have the same constant per-unit cost, specifically c1 = c2 = 20 . (a) What is the Nash equilibrium in this market if firms behave as Bertrand competitors? How much does each firm produce, what price do the firms charge, and what are their profits? (b) Now suppose that firm 1 acquires a new production technique that lowers its...
Suppose there are two firms operating in a market. The firms produce identical products, and the...
Suppose there are two firms operating in a market. The firms produce identical products, and the total cost for each firm is given by C = 10qi, i = 1,2, where qi is the quantity of output produced by firm i. Therefore the marginal cost for each firm is constant at MC = 10. Also, the market demand is given by P = 106 –2Q, where Q= q1 + q2 is the total industry output. The following formulas will be...
Suppose that two firms A and B sell water in a market. The market demand function...
Suppose that two firms A and B sell water in a market. The market demand function can be expressed as P = 120 – Q, where Q = qA+qB. For each producer, the marginal cost =average total cost of producing each unit = $30. If the firms behave as Cournot competitors, in the Nash equilibrium, the industry price of water will be a. $60 b. $20 c. $30
Three oligopolists operate in a market with inverse demand given by p (Q ) = a...
Three oligopolists operate in a market with inverse demand given by p (Q ) = a −Q , where Q = q1 + q2 + q3, and qi is the quantity produced by firm i. Each firm has a constant marginal cost of production, c and no fixed cost. The firms choose their quantities dy- namically as follows: (1) Firm 1, who is the industry leader, chooses q1 ≥ 0; (2) Firms 2 and 3 observe q1 and then simultaneously...