Question

2) Suppose that the price of good X is $2 and the price of good Y...

2) Suppose that the price of good X is $2 and the price of good Y is $3. You have $140 to spend and your preferences over X and Y are defined as U(x,y) = x2/3y1/3

a. Calculate the marginal utility of X (remember, this is the change in utility resulting from a slight increase in consumption of X). You can either do this using calculus or an excel spreadsheet—both work. £(X,Y) = x2/3y1/3 + λ(140 – 2X – 3Y)

b. Calculate the Marginal Utility of Y

c. What is the optimal Choice of X and Y given the PX = $2, PY = $3 and I = $140 £(X,Y) = x2/3y1/3 + λ(140 – 2X – 3Y)

d. At an income of $140 and the price of good X is $2 and the price of good Y is $3, what is the total utility achieved given the Utility Function.

e. If Income is decreased to $84 (I1 = $84) calculate and show your work on how the optimal choice of X and Y change.

f. At an income of $84 and the price of good X is $2 and the price of good Y is $3, what is the total utility achieved given the Utility Function.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose the price of good A is $2 and price of good B is $3. You...
Suppose the price of good A is $2 and price of good B is $3. You have $90 to spend and your preferences over A and B are defined as: a^2/3*b^1/3 = U(a,b). If income changes from $100 to $84, Pa = $2, Pb = $3 calculate and show work on how the optimal choice of A and B change and what the total utility achieved is given the Utility Function.
11. Find the marginal utility of good X and the marginal utility of good Y ifor...
11. Find the marginal utility of good X and the marginal utility of good Y ifor the consumer, whose preferences are described by utility function U(x;y) = 2x + y. 12. Find the marginal utility of good X and the marginal utility of good Y for the consumer, whose preferences are described by utility function U(x;y) = xy2. 13. Explain, what should be taken into account in order to find the consumer’s optimal choice of goods. 14. Outline and explain...
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy....
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy. Find the optimal values of x and y as a function of the prices px and py with an income level m. px and py are the prices of good x and y respectively. 2. Consider a utility function that represents preferences: u(x,y) = min{80x,40y} Find the optimal values of x and y as a function of the prices px and py with an...
A consumer has preferences represented by the utility function u(x, y) = x^(1/2)*y^(1/2). (This means that...
A consumer has preferences represented by the utility function u(x, y) = x^(1/2)*y^(1/2). (This means that MUx=(1/2)x^(−1/2)*y^(1/2) and MUy =1/2x^(1/2)*y^(−1/2) a. What is the marginal rate of substitution? b. Suppose that the price of good x is 2, and the price of good y is 1. The consumer’s income is 20. What is the optimal quantity of x and y the consumer will choose? c. Suppose the price of good x decreases to 1. The price of good y and...
Consider a consumer with a utility function U = x2/3y1/3, where x and y are the...
Consider a consumer with a utility function U = x2/3y1/3, where x and y are the quantities of each of the two goods consumed. A consumer faces prices for x of $2 and y of $1, and is currently consuming 10 units of good X and 30 units of good Y with all available income. What can we say about this consumption bundle? Group of answer choices a.The consumption bundle is not optimal; the consumer could increase their utility by...
Suppose there are two goods, X and Y.  The price of good X is $2 per unit...
Suppose there are two goods, X and Y.  The price of good X is $2 per unit and the price of good Y is $3 per unit.  A given consumer with an income of $300 has the following utility function: U(X,Y) = X0.8Y0.2         which yields marginal utilities of: MUX= 0.8X-0.2Y0.2 MUY= 0.2X0.8Y-0.8         a.     What is the equation for this consumer’s budget constraint in terms of X and Y?         b.    What is the equation for this consumer’s marginal rate of substitution (MRSXY)?  Simplifyso you only have...
Jim’s utility function for good x and good y is U(x, y) = X^1/4*Y^3/4. 1. Calculate...
Jim’s utility function for good x and good y is U(x, y) = X^1/4*Y^3/4. 1. Calculate Jim’s marginal utilities for good x and good y. 2. Calculate Jim’s Marginal rate of substation of his utility function.
In decomposing the total effect of a price change into income and substitution, we can solve...
In decomposing the total effect of a price change into income and substitution, we can solve it using consumer optimization. Utility U=XY+20X and total income is $200. Original price of X, Px=$4 and price of good Y, Py=$1. The original optimal bundle is (X=27.5, Y=90). Then the price of X decreases to $2. And the new optimal consumption is (X=55, Y=200). Write out the Lagrange for the expenditure minimization problem solving for the optimal bundle at the new prices and...
A consumer's preferences are given by the utility function u=(107)^2+2(x-5)y and the restrictions x>5 and y>0...
A consumer's preferences are given by the utility function u=(107)^2+2(x-5)y and the restrictions x>5 and y>0 are imposed. 1. Write out the Lagrangian function to solve the consumer's choice problem. Use the Lagrangian to derive the first order conditions for the consumer's utility maximizing choice problem. Consider only interior solutions. Show your work. 2. Derive the Optimal consumption bundles x*(px,py,w) and y*(px,py,w) 3. Use the first order condition from 1 to calculate the consumer's marginal utility of income when w=200,...
A consumer has an income of $120 to buy two goods (X, Y). the price of...
A consumer has an income of $120 to buy two goods (X, Y). the price of X is $2 and the price of Y is $4. The consumer utility function is given by ?(?, ?) = ? 2/3 ∗ ? 1/3 You are also told that his marginal utilities are ??? = 2 3 ( ? ? ) 1/3 ??? = 1 3 ( ? ? ) 2/3 1. Find the slope of the budget constrain. (1 point) 2. Calculate...