Question

Suppose you have the following preferences u(x,y) = v(x) + y. Calculate the optimal demand functions....

Suppose you have the following preferences u(x,y) = v(x) + y. Calculate the optimal demand functions. Is good x an ordinary  or giffen  good? Please show work.

Homework Answers

Answer #1

Examples of giffen goods : Rice , Potato , Public transport etc . They are in greater demand as price increases . When the price of staple goods like rice increases consumers are left with lesser money to buy expensive products . Hence they cut down on consumption of other products and are forced to buy more rice .

Giffen goods have an upward sloping demand curve .

3)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two functions, u(x,y) and v(x,y), are said to verify the Cauchy-Riemann differentiation equations if they satisfy...
Two functions, u(x,y) and v(x,y), are said to verify the Cauchy-Riemann differentiation equations if they satisfy the following equations ∂u\dx=∂v/dy and ∂u/dy=−(∂v/dx) a. Verify that the Cauchy-Riemann differentiation equations can be written in the polar coordinate form as ∂u/dr=1/dr ∂v/dθ and ∂v/dr =−1/r ∂u/∂θ b. Show that the following functions satisfy the Cauchy-Riemann differen- tiation equations u=ln sqrt(x^(2)+y^(2)) and v= arctan y/x.
Suppose your utility function is given by U(x,y)=xy2 . The price of x is Px, the...
Suppose your utility function is given by U(x,y)=xy2 . The price of x is Px, the price of y is Px2 , and your income is M=9Px−2Px2. a) Write out the budget constraint and solve for the MRS. b) Derive the individual demand for good x. (Hint: you need to use the optimality condition) c) Is x an ordinary good? Why or why not? d) Suppose there are 15 consumers in the market for x. They all have individual demand...
Verify the Caucy-riemann equations for the functions u(x,y), v(x,y) defined in the given domain u(x,y)=x³-3xy², v(x,y)=3x²y-y³,...
Verify the Caucy-riemann equations for the functions u(x,y), v(x,y) defined in the given domain u(x,y)=x³-3xy², v(x,y)=3x²y-y³, (x,y)ɛR u(x,y)=sinxcosy,v(x,y)=cosxsiny (x,y)ɛR u(x,y)=x/(x²+y²), v(x,y)=-y/(x²+y²),(x²+y²),   ( x²+y²)≠0 u(x,y)=1/2 log(x²+y²), v(x,y)=sin¯¹(y/√¯x²+y²), ( x˃0 )                          In each case,state a complex functions whose real and imaginary parts are u(x,y) and v(x,y)
Suppose f is entire, with real and imaginary parts u and v satisfying u(x, y) v(x,...
Suppose f is entire, with real and imaginary parts u and v satisfying u(x, y) v(x, y) = 3 for all z = x + iy. Show that f is constant. Be clearly, please. Do not upload same answers from others on Chegg. THANKS
2. Consider a consumer with preferences represented by the utility function: u(x,y)=3x+6sqrt(y) (a) Are these preferences...
2. Consider a consumer with preferences represented by the utility function: u(x,y)=3x+6sqrt(y) (a) Are these preferences strictly convex? (b) Derive the marginal rate of substitution. (c) Suppose instead, the utility function is: u(x,y)=x+2sqrt(y) Are these preferences strictly convex? Derive the marginal rate of sbustitution. (d) Are there any similarities or differences between the two utility functions?
Consider a consumer with preferences represented by the utility function u(x,y)=3x+6 sqrt(y) (a) Are these preferences...
Consider a consumer with preferences represented by the utility function u(x,y)=3x+6 sqrt(y) (a) Are these preferences strictly convex? (b) Derive the marginal rate of substitution. (c) Suppose instead, the utility function is: u(x,y)=x+2 sqrt(y) Are these preferences strictly convex? Derive the marginal rate of substitution. (d) Are there any similarities or differences between the two utility functions?
If z=(x+4y)ex+y,x=ln(u),y=v,z=(x+4y)ex+y,x=ln(u),y=v, find ∂z∂u∂z∂u and ∂z∂v∂z∂v. The variables are restricted to domains on which the functions...
If z=(x+4y)ex+y,x=ln(u),y=v,z=(x+4y)ex+y,x=ln(u),y=v, find ∂z∂u∂z∂u and ∂z∂v∂z∂v. The variables are restricted to domains on which the functions are defined.
if y=uv, where u and v are functions of x, show that the nth derivative of...
if y=uv, where u and v are functions of x, show that the nth derivative of y with respect to x is given by (also known as Leibniz Rule)
A consumer has preferences represented by the utility function u(x, y) = x^(1/2)*y^(1/2). (This means that...
A consumer has preferences represented by the utility function u(x, y) = x^(1/2)*y^(1/2). (This means that MUx=(1/2)x^(−1/2)*y^(1/2) and MUy =1/2x^(1/2)*y^(−1/2) a. What is the marginal rate of substitution? b. Suppose that the price of good x is 2, and the price of good y is 1. The consumer’s income is 20. What is the optimal quantity of x and y the consumer will choose? c. Suppose the price of good x decreases to 1. The price of good y and...
Suppose a consumer's preferences are given by U(X,Y) = X*Y. Therefore the MUX = Y and...
Suppose a consumer's preferences are given by U(X,Y) = X*Y. Therefore the MUX = Y and MUY = X. Suppose the price of good Y is $1 and the consumer has $80 to spend (M = 80).   Sketch the price-consumption curve for the values PX = $1 PX = $2 PX = $4 To do this, carefully draw the budget constraints associated with each of the prices for good X, and indicate the bundle that the consumer chooses in each...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT