Question

Suppose an economy is described by the following production function: Y = K1/2 (EL)1/2 The savings...

Suppose an economy is described by the following production function:

Y = K1/2 (EL)1/2

The savings rate in the economy is 0.40, population is growing at a rate of 0.01, technological progress is growing at a rate of 0.01, and the depreciation rate is 0.02.

What is the steady state level of investment per effective worker?

Homework Answers

Answer #1

Production function is given by :

Y = K1/2 (EL)1/2 => (K1/2 (EL)1/2)/(EL) = (K/(EL))1/2

=> y = k1/2 where y = Y/(EL) and k = K/(EL)

Steady state occurs when Change in k = sy - (d + n + g)k = 0

where, s = savings rate = 0.40, n = population growth rate = 0.01, g = technological progress growth rate = 0.01, and d = depreciation rate = 0.02.

Thus at steady state, 0.4k1/2 - (0.02 + 0.01 + 0.01)k = 0 => k = 100

=> Investment per worker = sy = 0.4*1001/2 = 4

Hence, Investment per worker = 4

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose an economy is described by the following production function: Y = K1/2 (EL)1/2 The savings...
Suppose an economy is described by the following production function: Y = K1/2 (EL)1/2 The savings rate in the economy is 0.40, population is growing at a rate of 0.01, technological progress is growing at a rate of 0.01, and the depreciation rate is 0.02. What is the steady state level of output per effective worker?
Suppose an economy is described by the following production function: Y = K1/2 (EL)1/2 The savings...
Suppose an economy is described by the following production function: Y = K1/2 (EL)1/2 The savings rate in the economy is 0.40, population is growing at a rate of 0.01, technological progress is growing at a rate of 0.01, and the depreciation rate is 0.02. What is the Golden Rule level of capital per effective worker? (Use two decimal places)
Assume that the production function in an economy is given by y=k1/2, where y and k...
Assume that the production function in an economy is given by y=k1/2, where y and k are the per-worker levels of output and capital, respectively. The savings rate is given by s=0.2 and the rate of depreciation is 0.05. What is the optimal savings rate to achieve the golden-rule steady state level of k?
Assume that an economy is described by the Solow growth model as below: Production Function: y=50K^0.4...
Assume that an economy is described by the Solow growth model as below: Production Function: y=50K^0.4 (LE)^0.6 Depreciation rate: S Population growth rate: n Technological growth rate:g Savings rate: s a. What is the per effective worker production function? b. Show that the per effective worker production function derived in part a above exhibits diminishing marginal returns in capital per effective worker C.Solve for the steady state output per effective worker as a function of s,n,g, and S d. A...
Consider an economy described by the following production function: ? = ?(?, ?) = ?^1/3 ?^2/3...
Consider an economy described by the following production function: ? = ?(?, ?) = ?^1/3 ?^2/3 depreciation rate is 5 percent (? = 0.05) the population grows at 2 percent (n = 0.02) savings rate is 20 percent (s = 0.20) f) At what rates do the following grow at in the steady state: [3 points] a. Capital per worker, k: b. Output per worker, y: c. Total output, Y:
Suppose that the economy’s production function is given by Y = K1/3N2/3 and that both, the...
Suppose that the economy’s production function is given by Y = K1/3N2/3 and that both, the savings rate s and the depreciation rate δ are equal to 0.10. a. What is the steady-state level of capital per worker? b. What is the steady-state level of output per worker? Suppose that the economy is in steady state and that, in period t the depreciation rate increases permanently from 0.10 to 0.20. c. What will be the new steady-state levels of capital...
1. Suppose that the economy’s production function is Y = K.2 (eL).8 , that the saving...
1. Suppose that the economy’s production function is Y = K.2 (eL).8 , that the saving rate, s, is equal to 10 percent, and the depreciation rate, δ, is equal to 3 percent. Suppose further that the number of workers, L, grows at 1 percent a year and that the rate of technological progress, g, is 1 percent per year. Find the steady-state values of the following: a. The capital stock per efficiency units of labor 2 b. Output per...
Intermediate Macroeconomics! Thank you!! Suppose that the economy is summarized by the Solow economy with technological...
Intermediate Macroeconomics! Thank you!! Suppose that the economy is summarized by the Solow economy with technological progress: Production Function: Y=10K.3(LE).7 Savings rate: s= .2 Depreciation rate: δ= .1 Population Growth rate: n= .02 Technological growth rate: g= .01 a) Derive the per effective worker production function for this economy. b) Based on your answer in part (a), derive the formula for marginal product of capital (MPK) and show that the per effective worker production function exhibits diminishing marginal product of...
Suppose that output (Y ) in an economy is given by the following aggregate production function:...
Suppose that output (Y ) in an economy is given by the following aggregate production function: Yt = Kt + Nt where Kt is capital and Nt is the population. Furthermore, assume that capital depreciates at rate δ and that savings is a constant proportion s of income. You may assume that δ > s. Suppose that the population remains constant. Solve for the steady-state level of capital per worker. Now suppose that the population grows at rate n. Solve...
1. Suppose that the economy’s production function is Y = K.25 (eL).75 , that the saving...
1. Suppose that the economy’s production function is Y = K.25 (eL).75 , that the saving rate, s, is equal to 21 percent, and the depreciation rate, d, is equal to 5 percent. Suppose further that the number of workers, L, grows at 1 percent a year and that the rate of technological progress, g, is 1 percent per year. Find the steady-state values of the following: a. The capital stock per efficiency units of labor b. Output per efficiency...