Question

Two players can name a positive integer number from 1 to 6. If the sum of...

Two players can name a positive integer number from 1 to 6. If the sum of the two numbers does not exceed 6 each player obtains payoff equal to the number that the player named. If the sum exceeds 6, the player who named the lower number obtains the payoff equal to that number and the other player obtains a payoff equal to the difference between 6 and the lower number. If the sum exceeds 6 and both numbers are equal each player obtains a payoff of 3. Find all pure strategy Nash equilibria of this game.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
24. Two players are engaged in a game of Chicken. There are two possible strategies: swerve...
24. Two players are engaged in a game of Chicken. There are two possible strategies: swerve and drive straight. A player who swerves is called Chicken and gets a payoff of zero, regardless of what the other player does. A player who drives straight gets a payoff of 432 if the other player swerves and a payoff of −48 if the other player also drives straight. This game has two pure strategy equilibria and a. a mixed strategy equilibrium in...
In the “divide two apples” game, player 1 suggests a division scheme (x,y) from the set...
In the “divide two apples” game, player 1 suggests a division scheme (x,y) from the set {(2, 0), (1, 1), (0, 2)} where x is the number of apples allocated to player 1, and y is the number of apples allocated to player 2. Player 2 counters with a division scheme of her own that comes from the same set. The final allocation is obtained by averaging the two proposed division schemes. The apples can be cut if the resulting...
(4) In this game, each of two players can volunteer some of their spare time planting...
(4) In this game, each of two players can volunteer some of their spare time planting and cleaning up the community garden. They both like a nicer garden and the garden is nicer if they volunteer more time to work on it. However, each would rather that the other person do the volunteering. Suppose that each player can volunteer 0, 1, 2, 3, or4 hours. If player 1 volunteers x hours and 2 volunteers y hours, then the resultant garden...
Consider the following two-person zero-sum game. Assume the two players have the same two strategy options....
Consider the following two-person zero-sum game. Assume the two players have the same two strategy options. The payoff table shows the gains for Player A. Player B Player A strategy b1 strategy b2 strategy a1 3 9 Strategy a2 6 2 Determine the optimal strategy for each player. What is the value of the game?
. Present your formal analysis carefully and compute the Nash equilibria of the following location game...
. Present your formal analysis carefully and compute the Nash equilibria of the following location game in pure strategies. There are two people who simultaneously select numbers between zero and one. Suppose player 1 chooses s1 and player 2 chooses s2. If si < sj , then player i gets a payoff of (si+sj ) 2 and player j obtains 1 − (si+sj ) 2 , for i = 1, 2. If s1 = s2, then both players get a...
Compute the Nash equilibria of the following location game. There are two people who simultaneously select...
Compute the Nash equilibria of the following location game. There are two people who simultaneously select numbers between zero and one. Suppose player 1 chooses s1 and player 2 chooses s2 . If si = sj , then player i gets a payoff of (si + sj )/2 and player j obtains 1 − (si + sj )/2, for i = 1, 2. If s1 = s2 , then both players get a payoff of 1/2.
Consider the following two-person zero-sum game. Assume the two players have the same three strategy options....
Consider the following two-person zero-sum game. Assume the two players have the same three strategy options. The payoff table below shows the gains for Player A. Player B Player A Strategy b1 Strategy b2 Strategy b3 Strategy  a1   3 2 ?4 Strategy  a2 ?1 0   2 Strategy  a3   4 5 ?3 Is there an optimal pure strategy for this game? If so, what is it? If not, can the mixed-strategy probabilities be found algebraically? What is the value of the game?
Below is a game between player A and player B. Each player has two possible strategies:...
Below is a game between player A and player B. Each player has two possible strategies: 1 or 2. The payoffs for each combination of strategies between A and B are in the bracket. For example, if A plays 1 and B plays 1, the payoff for A is 1 and the payoff for B is 0. Player B Strategy 1 Strategy 2 Player A Strategy 1 (1,0) (0,1) Strategy 2 (0,1) (1,0) How many pure strategy Nash equilibria does...
Below is a game between player A and player B. Each player has two possible strategies:...
Below is a game between player A and player B. Each player has two possible strategies: 1 or 2. The payoffs for each combination of strategies between A and B are in the bracket. For example, if A plays 1 and B plays 1, the payoff for A is 1 and the payoff for B is 0. Player B Strategy 1 Strategy 2 Player A Strategy 1 (1,0) (0,1) Strategy 2 (0,1) (1,0) How many pure strategy Nash equilibria does...
QUESTION 3 Below is a game between player A and player B. Each player has two...
QUESTION 3 Below is a game between player A and player B. Each player has two possible strategies: 1 or 2. The payoffs for each combination of strategies between A and B are in the bracket. For example, if A plays 1 and B plays 1, the payoff for A is -3 and the payoff for B is -2. Player B Strategy 1 Strategy 2 Player A Strategy 1 (-3,-2) (10,0) Strategy 2 (0,8) (0,0) How many pure strategy Nash...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT