Question

Suppose goods ? and ? are perfect substitutes, and the consumer’s utility function is ?(?, ?)...

Suppose goods ? and ? are perfect substitutes, and the consumer’s utility function is ?(?, ?) = 2? + ?. The consumer’s budget constraint is 10 = ?x? + ?y?. Derive the consumer’s demands for ? and ? in terms of ?? and ??.

Homework Answers

Answer #1

We have the following information

U(X,Y) = 2X + Y

The marginal rate of substitution between X and Y is 2/1, which is a constant, independent of the quantities consumed of the goods. The indifference curves between the two goods are straight lines.

Marginal utility of X = ∂U/∂X = 2

Marginal utility of Y = ∂U/∂Y = 1

Using Lagrangian multiplier

µ = 2X + Y + λ(10 – PXX + PYY)

Mathematically, the first-order conditions

∂µ/∂X = 2 – λPX

2 = λPX

∂µ/∂Y = 1 – λPY

1 = λPY

could both hold only if 2/1 = PX/PY, which would happen by coincidence. Usually, the consumer will choose to be at a corner solution, spending all her money on the good for which ai/Pi is highest (ai is coefficient of the ith good in utility function and Pi is the price of ith good).

So, if 2/PX>1/PY, then the consumer will chose

X = 10/PX

On the other hand if 2/PX<1/PY, then the consumer will chose

Y = 10/PY

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a consumer’s Utility Function U(x,y) = X1/2Y1/2. The consumer wants to choose the bundle (x*,...
Suppose a consumer’s Utility Function U(x,y) = X1/2Y1/2. The consumer wants to choose the bundle (x*, y*) that would maximize utility. Suppose Px = $5 and Py = $10 and the consumer has $500 to spend. Write the consumer’s budget constraint. Use the budget constraint to write Y in terms of X. Substitute Y from above into the utility function U(x,y) = X1/2Y1/2. To solve for the utility maximizing, taking the derivative of U from (b) with respect to X....
Suppose the consumer’s utility function is equal to U=3x+5y. Currently the price of x is $5,...
Suppose the consumer’s utility function is equal to U=3x+5y. Currently the price of x is $5, the price of y is $15 and the income the consumer has to spend on these goods is $100. A) Determine the MRSyx if we consume the bundle of (X,Y) = (1,2). B) What if we consume the bundle of (50,2). C) What is the opportunity cost of X in terms of Y? D) What quantities of X and Y should this consumer consume...
1. A consumer has the utility function U = min(2X, 5Y ). The budget constraint isPXX+PYY...
1. A consumer has the utility function U = min(2X, 5Y ). The budget constraint isPXX+PYY =I. (a) Given the consumer’s utility function, how does the consumer view these two goods? In other words, are they perfect substitutes, perfect complements, or are somewhat substitutable? (2 points) (b) Solve for the consumer’s demand functions, X∗ and Y ∗. (5 points) (c) Assume PX = 3, PY = 2, and I = 200. What is the consumer’s optimal bundle? (2 points) 2....
Consider a consumer whose utility function is u(x, y) = x + y (perfect substitutes) a....
Consider a consumer whose utility function is u(x, y) = x + y (perfect substitutes) a. Assume the consumer has income $120 and initially faces the prices px = $1 and py = $2. How much x and y would they buy? b. Next, suppose the price of x were to increase to $4. How much would they buy now?    c. Decompose the total effect of the price change on demand for x into the substitution effect and the...
. Suppose your utility depends on two goods: x and y. The utility function is u(x,...
. Suppose your utility depends on two goods: x and y. The utility function is u(x, y) = ln(x) + ln(y) . Suppose you have an income of $800. Further, assume that the price of x is 8 and the price of y is 10. Write down the equation for the budget constraint. Compute the marginal rate of subsitution between x and y. • Compute the utility maximizing combination of x and y. • Suppose your income increases to $1000...
Given is the Total Utility Function along with Budget Constraint:                               &nbs
Given is the Total Utility Function along with Budget Constraint:                                                  Utility Function:                                 U (X, Y) = X0.2Y0.3 Budget Constraint:                             I = XPx + Y Py What is the consumer’s marginal utility for X and for Y? Suppose the price of X is equal to 4 and the price of Y equal to 6. What is the utility maximizing proportion of X and Y in his consumption? {construct the budget constraint) If the total amount of money he is...
Suppose x1 and x2 are perfect substitutes with the utility function U(x1, x2) = 2x1 +...
Suppose x1 and x2 are perfect substitutes with the utility function U(x1, x2) = 2x1 + 6x2. If p1 = 1, p2 = 2, and income m = 10, what it the optimal bundle (x1*, x2*)?
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive...
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive the consumer’s marginal rate of substitution (b) Calculate the derivative of the MRS with respect to X. (c) Is the utility function homogenous in X? (d) Re-write the regular budget constraint as a function of PX , X, PY , &I. In other words, solve the equation for Y . (e) State the optimality condition that relates the marginal rate of substi- tution to...
Suppose, alternatively, that leisure and consumption goods are perfect substitutes. In this case, an indiference curve...
Suppose, alternatively, that leisure and consumption goods are perfect substitutes. In this case, an indiference curve is described by the equation i = al + bC, where a and b are positive constants, and u is the level of utility. That is, a given indiference curve has a particular value for u, with higher indiference curves having higher values for u. (a) Show what the consumer’s indiference curves look like when consumption and leisure are perfect substitutes, and determine graphically...
11. Find the marginal utility of good X and the marginal utility of good Y ifor...
11. Find the marginal utility of good X and the marginal utility of good Y ifor the consumer, whose preferences are described by utility function U(x;y) = 2x + y. 12. Find the marginal utility of good X and the marginal utility of good Y for the consumer, whose preferences are described by utility function U(x;y) = xy2. 13. Explain, what should be taken into account in order to find the consumer’s optimal choice of goods. 14. Outline and explain...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT