Question

Suppose the preferences of an individual are represented by a quasilinear utility func- tion: U (x,...

Suppose the preferences of an individual are represented by a quasilinear utility func- tion: U (x, y) = 3 ln(x) + 6y (a) Initially, px=1, py=2 and I=101. Then, the price of x increases to 2 (px=2). Cal- culate the changes in the demand for x. What can you say about the substitution and income effects of the change in px on the consumption of x? (Hint: since the change in price is not small, you cannot use the Slutsky equation) (b) What can you say about the substitution and income effects of the change in px on the consumption of y? (c) Instead of doubling to 2, suppose px is only increased by a small amount. Use the Slutsky equation to find the substitution and income effects of the change in the price of x on the consumption of x. Compare your result to (a). Explain why there’s no income effect of the change in px on the consumption of x. Show your result on an indifference curve. (d) Use the Slutsky equation to find the substitution and income effect of the change in px on the consumption of y. Compare your result to (b).

Homework Answers

Answer #1

Please ask remaining parts in a separate post.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) If a person's preferences could be represented by the utility func- tion u(F,C) = FC2...
(a) If a person's preferences could be represented by the utility func- tion u(F,C) = FC2 where F is her food consumption and C her clothing consumption, and if the price of food were 1, and her income was 60, what would be the equivalent variation (EV) to a fall in the price of clothing from 2 to 1/2? (b) What if the utility is U = min[C, F]?
Jane’s utility function has the following form: U(x,y)=x^2 +2xy The prices of x and y are...
Jane’s utility function has the following form: U(x,y)=x^2 +2xy The prices of x and y are px and py respectively. Jane’s income is I. (a) Find the Marshallian demands for x and y and the indirect utility function. (b) Without solving the cost minimization problem, recover the Hicksian demands for x and y and the expenditure function from the Marshallian demands and the indirect utility function. (c) Write down the Slutsky equation determining the effect of a change in px...
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy....
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy. Find the optimal values of x and y as a function of the prices px and py with an income level m. px and py are the prices of good x and y respectively. 2. Consider a utility function that represents preferences: u(x,y) = min{80x,40y} Find the optimal values of x and y as a function of the prices px and py with an...
Let the Utility Function be U = X1/2Y PX = $1; PY = $2; I =...
Let the Utility Function be U = X1/2Y PX = $1; PY = $2; I = $15 a. What are X and Y if there is an increase in the price of good X to $2? (0.5 Points) b. Use the slutsky equation to show this impact and what is attributed to the: a. Income Effect (0.5 Points) b. Substitution Effect (0.5 Points) c. What is the reduction in Utility caused by this increase in price? (0.5 Points)
Consider a consumer whose utility function is u(x, y) = x + y (perfect substitutes) a....
Consider a consumer whose utility function is u(x, y) = x + y (perfect substitutes) a. Assume the consumer has income $120 and initially faces the prices px = $1 and py = $2. How much x and y would they buy? b. Next, suppose the price of x were to increase to $4. How much would they buy now?    c. Decompose the total effect of the price change on demand for x into the substitution effect and the...
Consider the utility function U(x,y) = xy Income is I=400, and prices are initially px =10...
Consider the utility function U(x,y) = xy Income is I=400, and prices are initially px =10 and py =10. (a) Find the optimal consumption choices of x and y. (b) The price of x changes, to px =40, while the price of y remains the same. What are the new optimal consumption choices for x and y? (c) What is the substitution effect? (d) What is the income effect?
A consumer has preferences represented by the utility function u(x, y) = x^(1/2)*y^(1/2). (This means that...
A consumer has preferences represented by the utility function u(x, y) = x^(1/2)*y^(1/2). (This means that MUx=(1/2)x^(−1/2)*y^(1/2) and MUy =1/2x^(1/2)*y^(−1/2) a. What is the marginal rate of substitution? b. Suppose that the price of good x is 2, and the price of good y is 1. The consumer’s income is 20. What is the optimal quantity of x and y the consumer will choose? c. Suppose the price of good x decreases to 1. The price of good y and...
8) Suppose a consumer’s utility function is defined by u(x,y)=3x+y for every x≥0 and y≥0 and...
8) Suppose a consumer’s utility function is defined by u(x,y)=3x+y for every x≥0 and y≥0 and the consumer’s initial endowment of wealth is w=100. Graphically depict the income and substitution effects for this consumer if initially Px=1 =Py and then the price of commodity x decreases to Px=1/2.
Suppose a consumer’s utility function is given by U(X,Y) = X*Y. Also, the consumer has $360...
Suppose a consumer’s utility function is given by U(X,Y) = X*Y. Also, the consumer has $360 to spend, and the price of X, PX = 9, and the price of Y, PY = 1. a) (4 points) How much X and Y should the consumer purchase in order to maximize her utility? b) (2 points) How much total utility does the consumer receive? c) (4 points) Now suppose PX decreases to 4. What is the new bundle of X and...
Alice’s preferences over two goods are described by the utility function u(x1, x2) = 2x1+ 4x2....
Alice’s preferences over two goods are described by the utility function u(x1, x2) = 2x1+ 4x2. Her income is m= 100 and p1= 4, p2= 5. Assume now that the price of good 1 falls to p01= 2. a) Find the substitution, income, and total effect for good 1. b) Find the substitution, income, and total effect for good 2. c) Verify that the Slutsky equation holds for both goods
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT