Question

A consumer has the Cobb-Douglas utility function u(x1,x2)=x3.51x42u(x_1, x_2) = x_1^{3.5}x_2^{4} The price of good 1...

A consumer has the Cobb-Douglas utility function

u(x1,x2)=x3.51x42u(x_1, x_2) = x_1^{3.5}x_2^{4}

The price of good 1 is 1.5 and the price of good 2 is 3. The consumer has an income of 11.

What amount of good 2 will the consumer choose to consume?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a utility function u(x1,x2)u(x_1, x_2) where: MU1=2x11x42MU_1 = 2x_1^{1} x_2^{4} MU2=4x21x32MU_2 = 4x_1^{2} x_2^{3} The...
Consider a utility function u(x1,x2)u(x_1, x_2) where: MU1=2x11x42MU_1 = 2x_1^{1} x_2^{4} MU2=4x21x32MU_2 = 4x_1^{2} x_2^{3} The consumer with this utility function is consuming an optimal bundle (x∗1,x∗2)=(4,6)(x_1^*, x_2^*) = (4, 6) when the price of good 1 is p1=2p_1 = 2. What is the consumer’s income?
Consider a consumer who consumes two goods and has utility function u(x1,x2)=x2 +√x1. The price of...
Consider a consumer who consumes two goods and has utility function u(x1,x2)=x2 +√x1. The price of good 2 is 1, the price of good 1 is p, and income is m. (1) Show that a) both goods are normal, b) good 1 is an ordinary good, c) good 2 is a gross substitute for good 1.
The utility function U(x1, x2) = lnx1 ^5 + lnx2^2 represents Cobb- Douglas preferences. Show if...
The utility function U(x1, x2) = lnx1 ^5 + lnx2^2 represents Cobb- Douglas preferences. Show if it is true or false. (without using graph)
A consumer has a utility function of the type U(x1, x2) = max (x1, x2). What...
A consumer has a utility function of the type U(x1, x2) = max (x1, x2). What is the consumer’s demand function for good 1?
Consider the following utility function: U(x1,x2) X11/3 X2 Suppose a consumer with the above utility function...
Consider the following utility function: U(x1,x2) X11/3 X2 Suppose a consumer with the above utility function faces prices p1 = 2 and p2 = 3 and he has an income m = 12. What’s his optimal bundle to consume?
Consider the following Constant Elasticity of Substitution utility function U(x1,x2) = x1^p+x2^p)^1/p                         &nbs
Consider the following Constant Elasticity of Substitution utility function U(x1,x2) = x1^p+x2^p)^1/p                                                                                                                                           a. Show that the above utility function corresponds to (hint:use the MRS between good 1 and good 2. The ->refers to the concept of limits.                  1. The perfect substitute utility function at p=1 2. The Cobb-Douglas utility function as p -->0 3. The Leontiff (of min(x1,x2) as p--> -infinity b. For infinity<p<1, a given level of income I and prices p1 and p2. 1. Find the marshallian...
Consider a two good economy. A consumer has a utility function u(x1, x2) = exp (x1x2)....
Consider a two good economy. A consumer has a utility function u(x1, x2) = exp (x1x2). Let p = p1 and x = x1. (1) Compute the consumer's individual demand function of good 1 d(p). (2) Compute the price elasticity of d(p). Compute the income elasticity of d(p). Is good 1 an inferior good, a normal good or neither? Explain. (3) Suppose that we do not know the consumer's utility function but we know that the income elasticity of his...
3. Suppose that a consumer has a utility function u(x1, x2) = x1 + x2. Initially...
3. Suppose that a consumer has a utility function u(x1, x2) = x1 + x2. Initially the consumer faces prices (1, 2) and has income 10. If the prices change to (4, 2), calculate the compensating and equivalent variations. [Hint: find their initial optimal consumption of the two goods, and then after the price increase. Then show this graphically.] please do step by step and show the graph
Consider the Cobb-Douglas utility function u(x1,x2)=x1^(a)x2^(1-a). a. Find the Hicksian demand correspondence h(p, u) and the...
Consider the Cobb-Douglas utility function u(x1,x2)=x1^(a)x2^(1-a). a. Find the Hicksian demand correspondence h(p, u) and the expenditure function e(p,u) using the optimality conditions for the EMP. b. Derive the indirect utility function from the expenditure function using the relationship e(p,v(p,w)) =w. c. Derive the Walrasian demand correspondence from the Hicksian demand correspondence and the indirect utility function using the relationship x(p,w)=h(p,v(p,w)). d. vertify roy's identity. e. find the substitution matrix and the slutsky matrix, and vertify the slutsky equation. f....
Maximise square root utility Consumption of good 1 is denoted x_1 and consumption of good 2...
Maximise square root utility Consumption of good 1 is denoted x_1 and consumption of good 2 by x_2. The agent has the utility function u(x_1, x_2) = √x_1 + √x_2 (the square root of x_1 plus the square root of x_2). Here, √ denotes the square root, * multiplication, + addition. Maximize u by choosing (x_1,x_2) subject to the budget constraint x_1 +3*x_2<=12 and the minimal consumption amount constraints x_1>=0 and x_2>=3.35. Write the quantity x_1 of good 1 that...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT