Question

Homework Assignment 5 1. U = XY where MRS = Y/X; I = 1500, Px =...

Homework Assignment 5

1. U = XY where MRS = Y/X; I = 1500, Px = Py = 15,

A. Derive optimal consumption bundle.

B. If Px increases to be $30, derive the new optimal consumption bundle

C. Using the results from A and B, derive the individual demand for good X assuming the demand is linear.

2. Assuming the market has two consumers for a very special GPU and their individual demands are given below

Consumer A: P = 450 – 4 Q; Consumer B: P = 500 – 5 Q

A. Derive the market demand for this GPU.

Also, review the handout for income and substitution effects

Homework Answers

Answer #1

(1)

U = XY

Consumption is optimal when MRS = Px/Py

MUx = U/X = Y

MUy = U/Y = X

MRS = MUx/MUy = Y/X = Px/Py

(a) Px = Py = 15

MRS = Y/X = 15/15 = 1

X = Y

Substituting in budget line,

1500 = 15X + 15Y

1500 = 15X + 15X = 30X

X = 50

Y = X = 50

(b) When PX = 30,

MRS = Y/X = 30/15 = 2

Y = 2X

Substituting in new budget line:

1500 = 30X + 15Y

1500 = 30X + 15(2X)

1500 = 30X + 30X = 60X

X = 25

Y = 2 x 25 = 50

(C) Linear demand function: Px = a - b.QX

When Px = 15, Qx = 50

15 = a - 50b........(1)

When Px = 30, Qx = 25

30 = a - 25b........(2)

(2) - (1) yields:

15 = 25b

b = 0.6

a = 15 + 50b [From (1)] = 15 + (50 x 0.6) = 15 + 30 = 45

Linear demand equation: Px = 45 - 0.6Qx

NOTE: As per Answering Policy, 1st question is answered.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the utility function U(x,y) = xy Income is I=400, and prices are initially px =10...
Consider the utility function U(x,y) = xy Income is I=400, and prices are initially px =10 and py =10. (a) Find the optimal consumption choices of x and y. (b) The price of x changes, to px =40, while the price of y remains the same. What are the new optimal consumption choices for x and y? (c) What is the substitution effect? (d) What is the income effect?
Suppose a consumer has the utility function U (x, y) = xy + x + y....
Suppose a consumer has the utility function U (x, y) = xy + x + y. Recall that for this function the marginal utilities are given by MUx(x,y) = y+1 and MUy(x,y) = x+1. (a) What is the marginal rate of substitution MRSxy? (b)If the prices for the goods are px =$2 and py =$4,and if the income of the consumer is M = $18, then what is the consumer’s optimal affordable bundle? (c) What if instead the prices are...
Assume that Sam has following utility function: U(x,y) = 2√x+y MRS=(x)^-1/2, px = 1/5, py =...
Assume that Sam has following utility function: U(x,y) = 2√x+y MRS=(x)^-1/2, px = 1/5, py = 1 and her income I = 10. price increase for the good x from px = 1/5 to p0x = 1/2. (a) Consider a price increase for the good x from px = 1/5 to p0x = 1/2. Find new optimal bundle under new price using a graph that shows the change in budget set and the change in optimal bundle when the price...
Given the following utility function and budget contraints: U(X,Y) = XY I = Px (X) +...
Given the following utility function and budget contraints: U(X,Y) = XY I = Px (X) + Py(Y) and given that: Py = 10 , Px=12 and I = 360 Fill in the blanks in the following table (round to two decimal places): Part 1:     What is the Value of Qx? Part 2:     What is the Value of Qy? Part 3:     What is the Optimal level of utility?
Let income be I = $90, Px = $2, Py = $1, and utility U =...
Let income be I = $90, Px = $2, Py = $1, and utility U = 4X½Y. a.[12] Write down and simplify the two conditions required for utility maximization. b.[6] Compute the optimal consumption bundle for the consumer. What is the level of utility at the optimum?
Suppose x represents weekly meat consumption and y represents weekly vegetables consumption. Their prices are px...
Suppose x represents weekly meat consumption and y represents weekly vegetables consumption. Their prices are px and py. Paul’s utility function is U1(x,y) = x2y3 and Peter’s utility function is U2(x,y) = 2x + 3y. a. Derive the utility level for both at the bundle (4,4) respectively. Does one enjoy the bundle (4,4) more than the other? b. If the meat price px = 5, vegetables price py = 1, and each of them has a budget of 100. What...
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy....
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy. Find the optimal values of x and y as a function of the prices px and py with an income level m. px and py are the prices of good x and y respectively. 2. Consider a utility function that represents preferences: u(x,y) = min{80x,40y} Find the optimal values of x and y as a function of the prices px and py with an...
Emily's preferences can be represented by u(x,y)=x^1/4 y^3/4 . Emily faces prices (px,py) = (2,1) and...
Emily's preferences can be represented by u(x,y)=x^1/4 y^3/4 . Emily faces prices (px,py) = (2,1) and her income is $120. Her optimal consumption bundle is: __________ (write in the form of (x,y) with no space) Now the price of x increases to $3 while price of y remains the same Her new optimal consumption bundle is: ____________ (write in the form of (x,y) with no space) Her Equivalent Variation is: $ ____________
U(X,Y) = 5X1/3Y2/3 PX =1->2 PY = 3 I = 120 (a) (30 marks) Find demand...
U(X,Y) = 5X1/3Y2/3 PX =1->2 PY = 3 I = 120 (a) Find demand functions X* and Y* (b) Find the initial optimum, A. (c) Find the final optimum, C. (d) Find the decomposition bundle, B (e) Fill in the blank X Y Income Effect Substitution Effect Total Effect
Consider a consumer with the following utility function: U(X, Y ) = XY. (a) Derive this...
Consider a consumer with the following utility function: U(X, Y ) = XY. (a) Derive this consumer’s marginal rate of substitution, MUX/MUY (b) Derive this consumer’s demand functions X∗ and Y∗. (c) Suppose that the market for good X is composed of 3000 identical consumers, each with income of $100. Derive the market demand function for good X. Denote the market quantity demanded as QX. (d) Use calculus to show that the market demand function satisfies the law-of-demand.