Question

For each of the following production functions (a and b) find the following equations (i-iii) in...

For each of the following production functions (a and b) find the following equations (i-iii) in terms of Q0 ,w and r.

i) MRTS L,K
ii) Long-run capital and labor demand curve.
iii) Long-run total cost curve.
iv) Short -run capital and labor demand curve if the firm is stuck with K = 9.
v) Short- run total cost if the firm is stuck with K =9 .

(a ) Q = 5L^(1/2) * K ^(1/2)
(b) Q = LK + 7L

Homework Answers

Answer #1

Doing the first 5 parts.

a)

b) Long-run capital and labor demand curve

c) Long-run cost curve:

d) Short-run capital and labor demand curve if the firm is stuck with K = 9

e) Short-run total cost if the firm is stuck with K =9

.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. For each of the following production functions (a and b) find the following equations (i-iii)...
2. For each of the following production functions (a and b) find the following equations (i-iii) in terms of Q0, w and r. i) MRTSL,K ii) Long-run capital and labor demand curve. iii) Short-run capital and labor demand curve if the firm is stuck with K= 4. (a) Q = 3L^2/3K^1/3 (b) Q = LK + 7L
a firm produces a product with labor and capital as inputs. The production function is described...
a firm produces a product with labor and capital as inputs. The production function is described by Q=LK. the marginal products associated with this production function are MPL=K and MPK=L. let w=1 and r=1 be the prices of labor and capital, respectively a) find the equation for the firms long-run total cost curve curve as a function of quantity Q b) solve the firms short-run cost-minimization problem when capital is fixed at a quantity of 5 units (ie.,K=5). derive the...
A firm produces a product with labor and capital. Its production function is described by Q...
A firm produces a product with labor and capital. Its production function is described by Q = min(L, K). Let w and r be the prices of labor and capital, respectively. a) Find the equation for the firm’s long-run total cost curve as a function of quantity Q and input prices, w and r. b) Find the solution to the firm’s short-run cost minimization problem when capital is fixed at a quantity of 5 units (i.e., K = 5). Derive...
Consider the following firm with its demand, production and cost of production functions: (1) Demand: Q...
Consider the following firm with its demand, production and cost of production functions: (1) Demand: Q = 230 – 2.5P + 4*Ps + .5*I, where Ps = 2.5, I = 20. (2) Inverse demand function [P=f(Q)], holding other factors (Ps = 2.5 and I =20) constant, is, P=100-.4*Q. (3) Production: Q = 1.2*L - .004L2 + 4*K - .002K2; (4) Long Run Total Cost: LRTC = 2.46*Q + .00025*Q2 (Note: there are no Fixed Costs); (5) Total Cost: TC =...
Consider a firm that used only two inputs, capital (K) and labor (L), to produce output....
Consider a firm that used only two inputs, capital (K) and labor (L), to produce output. The production function is given by: Q = 60L^(2/3)K^(1/3) . a.Find the returns to scale of this production function. b. Derive the Marginal Rate of Technical Substitutions (MRTS) between capital and labor. Does the law of diminishing MRTS hold? Why? Derive the equation for a sample isoquant (Q=120) and draw the isoquant. Be sure to label as many points as you can. c. Compute...
A hat manufacturing firm has the following production function with capital and labor being the inputs:...
A hat manufacturing firm has the following production function with capital and labor being the inputs: Q = min(5L,3K) (it has a fixed-proportions production function). If w is the cost of a unit of labor and r is the cost of a unit of capital, derive the firm’s optimal inputs, long-run total cost curve, average cost curve, and marginal cost curve in terms of the input prices and Q. b) A firm has the linear production function Q = 2L...
A firm’s production function is Q! = min(4L ,5K ). The price of labor is w...
A firm’s production function is Q! = min(4L ,5K ). The price of labor is w and the price of capital is r. a) Derive the demand function of labor and capital respectively. How does the demand of capital change with the price of capital? b) Derive the long-run total cost function. Write down the equation of the long-run expansion path. c) Suppose capital is fixed at K = 8 in the short run. Derive the short-run total cost function....
Suppose that firm face the following production function: Q = 2L^1/2 K^1/2 and firm has K...
Suppose that firm face the following production function: Q = 2L^1/2 K^1/2 and firm has K upper bar (is fixed) units of capital in short run. Suppose also that price of labor (W) is 16 and pricepf capital (r) is 1 and firm's objective output is 144. At what level K upper bar short run total cost would be equal to the long run total cost?
III. A production process uses two inputs, labor and capital which can be written as: Q...
III. A production process uses two inputs, labor and capital which can be written as: Q = 5LK, MPL = 5K and MPK = 5L 'w' = $150 and 'r' = $1000. Find the least cost combination of L and K when output Q = 1000 tons per day. What is the total cost of producing 1000 tons per day using this least cost combination?
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C =...
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C = 3L + 12K. (For some reason variable "w" is not provided) a. Optimize labor usage in the short run if the firm has 9 units of capital and the product price is $3. b. Show how you can calculate the short run average total cost for this level of labor usage? c. Determine “MP per dollar” for each input and explain what the comparative...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT