Question

Consider a duopoly with two firms with the cost functions: Firm 1: C1(q1)=5q1 Firm 2: C2(q2)=5q2...

Consider a duopoly with two firms with the cost functions:

Firm 1: C1(q1)=5q1

Firm 2: C2(q2)=5q2

The firms compete in a market with inverse demand

p = 300 - 8Q

where Q=q1+q2. The firms compete in a Cournot fashion by choosing output simultaneously.  

What is the Nash-Cournot equilibrium output of firm 1? Round to nearest .1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Fill in the blanks. Consider two firms facing the demand curve: P=60-5Q where Q=Q1+Q2. The firm's...
Fill in the blanks. Consider two firms facing the demand curve: P=60-5Q where Q=Q1+Q2. The firm's cost functions are C1(Q1)=15+10Q1 and C2(Q2)=15+20Q2 Combined, the firms will produce __ units of output, of which firm 1 will produce __ units and firm 2 will produce __ units. If the firms compete, then firm 1 will produce __ units of output and firm 2 will produce __ units of output. Draw the firms' reaction curves and sho the equilibrium. Then, indicate the...
Consider the Cournot duopoly model where the inverse demand is P(Q) = a – Q but...
Consider the Cournot duopoly model where the inverse demand is P(Q) = a – Q but firms have asymmetric marginal costs: c1 for firm 1 and c2 for firm 2. What is the Nash equilibrium if 0 < ci < a/2 for each firm? What if c1 < c2 < a, but 2c2 > a + c1?
Consider the Cournot duopoly model where the inverse demand function is given by P(Q) = 100-Q...
Consider the Cournot duopoly model where the inverse demand function is given by P(Q) = 100-Q but the firms have asymmetric marginal costs: c1= 40 and c2= 60. What is the Nash equilibrium of this game?
The inverse market demand in a homogeneous-product Cournot duopoly is P = 200 – 3(Q1 +...
The inverse market demand in a homogeneous-product Cournot duopoly is P = 200 – 3(Q1 + Q2) and costs are C1(Q1) = 26Q1 and C2(Q2) = 32Q2. a. Determine the reaction function for each firm. Firm 1: Q1 =  -  Q2 Firm 2: Q2 =  -  Q1 b. Calculate each firm’s equilibrium output. Firm 1: Firm 2: c. Calculate the equilibrium market price. $ d. Calculate the profit each firm earns in equilibrium. Firm 1: $ Firm 2: $
The inverse market demand in a homogeneous-product Cournot duopoly is P=200-3(Q1+Q2) and costs are C1(Q1)=26Q1 and...
The inverse market demand in a homogeneous-product Cournot duopoly is P=200-3(Q1+Q2) and costs are C1(Q1)=26Q1 and C2(Q2)=32Q2, find the optimal output, price, and maximized profit if the two oligopolists formed a cartel whose MC is the average between the oligopolists’ marginal costs. Assume the cartel splits profit equally among oligopolists.
Consider three firms that face market demand P = 101 - Q. The cost functions are...
Consider three firms that face market demand P = 101 - Q. The cost functions are C1(q1)=6(q1^2) for firm 1, C2(q2)=4(q2^2) for firm 2, and C3(q3)=4q(3^2) for firm 3. Firm 1 is the Stackelberg leader and firms 2 and 3 are the followers. What is firm 1's equilibrium output q1^*?
1.Both firms in a Cournot duopoly would enjoy lower profits if: Multiple Choice one firm reduced...
1.Both firms in a Cournot duopoly would enjoy lower profits if: Multiple Choice one firm reduced output below the Cournot Nash equilibrium level, while the other firm continued to produce its Cournot Nash equilibrium output. None of the answers is correct. each firm simultaneously increased output above the Nash equilibrium level. the firms simultaneously reduced output below the Nash equilibrium level. 2.Both firms in a Cournot duopoly would enjoy higher profits if: Multiple Choice the firms simultaneously reduced output below...
Consider an asymmetric Cournot duopoly game, where the two firms have different costs of production. Firm...
Consider an asymmetric Cournot duopoly game, where the two firms have different costs of production. Firm 1 selects quantity q1 and pays the production cost of 2q1 . Firm 2 selects quantity q2 and pays the production cost 4q2 . The market price is given by p = 12 − q1 − q2 . Thus, the payoff functions are u1 (q1,q2) = (12 − q1 − q2 ) q1 − 2q1 and u2 ( q1 , q2 ) = (12...
The inverse market demand in a homogeneous-product Cournot duopoly is P = 154 – 3(Q1 +...
The inverse market demand in a homogeneous-product Cournot duopoly is P = 154 – 3(Q1 + Q2) and costs are Company 1,  C1(Q1) = 10Q1 and Company 2 C2(Q2) = 18Q2. Calculate the equilibrium output for Company 2 Round all calculations to 1 decimal
There is a Cournot duopoly competition between Firm 1 and Firm 2. The inverse demand function...
There is a Cournot duopoly competition between Firm 1 and Firm 2. The inverse demand function is given by P(Q)=100-q, where Q=q1+q2 and qi denotes the quantity produced by firm i for all iÎ {1, 2} and the cost function is given by ci(qi)=10qi. Describe this problem as a normal-form game. Find pure-strategy Nash Equilibria for both firms.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT